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Introduction

We introduce:
▶ A newmulti-armed bandit problem: challenge of
exploring new strategies while maintaining fixed
baseline of revenue.

▶ For stochastic problem: new algorithms
satisfying minimum revenue constraint at every
step; problem-dependent guarantees on their
regret with respect to the optimal action.

▶ Regret lower bounds for stochastic problem,
showing our algorithms are almost optimal.

▶ For adversarial problem: high-probability regret
bounds showing penalty due to modifying
existing algorithms to maintain revenue
constraint.

Stochastic Conservative Bandits

▶ K + 1 actions or arms, each with mean reward
µi ∈ [0, 1] for i ∈ {0, 1, . . . , K}. “Default” action is
i = 0; µ0 is known and other µi are unknown.

▶ Learner chooses action It at round t and receives
reward Xt = µIt + ηt, where ηt is sub-gaussian
noise.

▶ With high probability (1 − δ), must satisfy
constraint

n∑
t=1

µIt ≥ (1 − α)µ0n , for all n;

▶ You choose α and δ (e.g. α = 0.1 loses up to 10%
revenue compared to the default action).

(Pseudo) regret of learner: gap between reward
and maximum achievable in hindsight (by always
choosing best action):

Rn =

n∑
t=1

(max
i
µi − µIt).

The Challenge: Minimizing regret requires
exploration to find best arm, but maintaining
constraint requires choosing default arm very often.
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Budget: Zt =

t∑
s=1

µIt − (1 − α)tµ0.

▶ Constraint satisfied iff budget is positive.
▶ Default action is safe: it increases budget by αµ0.
▶ Can use high probability lower bounds for
unknown µi to bound budget.

▶ Figure: Learner chooses default arm up to round
t − 1, accumulating budget Zt−1. Then it can
choose a safe arm (blue) keeping Zt > 0, but an
unsafe arm (red) would make Zt < 0.
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▶ Conservative UCB: choose arm with greatest
UCB, unless doing so would make the budget’s
LCB negative.

Conservative UCB Algorithm

1: Input: K, µ0, δ, ψδ(·)
2: for t ∈ 1, 2, . . . do
▷ Compute confidence intervals…

3: θ0(t), λ0(t)← µ0 ▷…for known µ0,
4: for i ∈ 1, . . . , K do ▷…for other arms,
5: ∆i(t)←

√
ψδ(Ti(t − 1))/Ti(t − 1)

6: θi(t)← µ̂i(t − 1) + ∆i(t)
7: λi(t)← max {0, µ̂i(t − 1) −∆i(t)

}
8: Jt ← argmaxi θi(t) ▷…and find UCB arm.
▷ Compute budget and…

9: ξt ←
∑t−1

s=1 λIs(t) + λ Jt(t) − (1 − α)tµ0

10: if ξt ≥ 0 then
11: It ← Jt ▷…choose UCB arm if safe,
12: else
13: It ← 0 ▷…default arm otherwise.
ψ(n) ≈ log log n is inspired by a concentration
inequality. A good choice is in the paper.

Variants of Algorithm

▶ Unknown µ0 (learn it by taking default action)
▶ Expected regret/budget (instead of high
probability)

Upper Bound on Regret

Theorem: For all rounds n, Conservative UCB
satisfies the following with probability at least 1 − δ:

▶ Minimum reward:
n∑

t=1

µIt ≥ (1 − α)nµ0,

▶ Maximum regret: Rn ≤ O
(√

nKL + KL/αµ0

)
,

where L = ψδ(n) ≈ log log n

Lower Bound on Regret

Theorem: There are “hard” environments: any
algorithm satisfying constraint must have regret

Eµ[Rn] ≥ Ω(
√

nK + K/αµ0).

▶ Can specify number of arms K, rounds n, and
reward of default arm µ0 (sufficiently far from 0
and 1).

▶ Almost matches Conservative UCB regret.

Adversarial Conservative Bandits

Adversary generates rewards Xt ,i ∈ [0, 1] (at round t
for arm i , 0), while Xt ,0 is held constant.
Constraint is:

n∑
t=1

Xt ,It ≥ (1 − α)
n∑

t=1

Xt ,0

Safe-play strategy: Act according to “base”
any-time high-probability adversarial bandit
algorithm (e.g. Exp3-IX of Neu, 2015) when safe.
Otherwise, default action.
Theorem: Let t0 = max{t ≥ 1 | αµ0t ≤ Rδ

t + µ0}.
When the base algorithm is {Rδ

t } admissible w.p.
1 − δ for any n, safe-play satisfies budget constraint
while achieving regret Rn ≤ t0 + Rδ

n.
Corollary: Safe-play strategy applied to Exp3-IX
gives w.p. 1 − δ (where L ≈ log n)

Rn ≤ O
(√

Kn logK + KL2/α2µ2
0

)
.

▶ Maintaining constraint costs more regret here
(KL2/α2µ2

0) than in stochastic case (KL/αµ0).
Can we do better?

Experiments

Environment:
K = 5 arms; µ0 = 0.5, µ1 = 0.6, µ2 = µ3 = µ4 = 0.4.
Comparing following algorithms:
Algorithm Constraint? Unknown µ0?
UCB × ✓
Unbalanced MOSS ✓(at end) ×
Budget-First ✓ ×
Conservative UCB ✓ ✓(optional)

First experiment:
▶ Regret after n = 104 steps with probability δ = 1/n
▶ Varying constraint harshness (α)
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Second experiment:
▶ Varying time horizon n with probability δ = 1/n
▶ Fixed α = 0.1
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Discussion

▶ Conservative UCB pays price for maintaining
constraint, getting worse as α becomes small

▶ Eventually almost as good as UCB
▶ Small advantage to know µ0, even when
unconstrained (α = 1)

▶ Unbalanced MOSS: better performance but only
satisfies constraint at end; no high-probability
bounds

Summary

▶ Introduced a new multi-armed bandit setting:
actual return must be close to that of a default
action uniformly in time

▶ Conservative UCB algorithm (and variants) for
stochastic problems; Safe-Play strategy for
adversarial

▶ Conservative UCB: near-optimal
▶ Gap between lower and upper bound for
adversarial case


