Conservative Bandits

Yifan Wu, Roshan Shariff, Tor Lattimore, Csaba Szepesvári {ywu12, roshan.shariff, tlattimo, szepesva}@ualberta.ca UNIVERSITY OF ALBERTA DEPARTMENT OF COMPUTING SCIENCE

Introduction	Conservative UCB Algorithm	Experiments
 We introduce: A new multi-armed bandit problem: challenge of exploring new strategies while maintaining fixed baseline of revenue. For stochastic problem: new algorithms satisfying minimum revenue constraint at every step; problem-dependent guarantees on their regret with respect to the optimal action. 	1: Input: K , μ_0 , δ , $\psi^{\delta}(\cdot)$ 2: for $t \in 1, 2,$ do \triangleright Compute confidence intervals 3: $\theta_0(t)$, $\lambda_0(t) \leftarrow \mu_0$ \triangleright for known μ_0 , 4: for $i \in 1,, K$ do \triangleright for other arms, 5: $\Delta_i(t) \leftarrow \sqrt{\psi^{\delta}(T_i(t-1))/T_i(t-1)}$ 6: $\theta_i(t) \leftarrow \hat{\mu}_i(t-1) + \Delta_i(t)$ 7: $\lambda_i(t) \leftarrow \max\{0, \hat{\mu}_i(t-1) - \Delta_i(t)\}$	Environment: $K = 5 \text{ arms}; \mu_0 = 0.5, \mu_1 = 0.6, \mu_2 = \mu_3 = \mu_4 = 0.4.$ Comparing following algorithms:AlgorithmConstraint? Unknown μ_0 ?UCB×UCB×Unbalanced MOSS \checkmark (at end)Sudget-First \checkmark Conservative UCB \checkmark \checkmark (optional)
 Regret lower bounds for stochastic problem, showing our algorithms are almost optimal. For adversarial problem: high-probability regret bounds showing penalty due to modifying existing algorithms to maintain revenue constraint. 	8: $J_t \leftarrow \arg \max_i \theta_i(t)$ >and find UCB arm. > Compute budget and 9: $\xi_t \leftarrow \sum_{s=1}^{t-1} \lambda_{I_s}(t) + \lambda_{J_t}(t) - (1 - \alpha)t \mu_0$ 10: if $\xi_t \ge 0$ then 11: $I_t \leftarrow J_t$ >choose UCB arm if safe, 12: else	First experiment: • Regret after $n = 10^4$ steps with probability $\delta = 1/n$ • Varying constraint harshness (α) UCB DE

Stochastic Conservative Bandits

- ► K + 1 actions or *arms*, each with mean reward $\mu_i \in [0, 1]$ for $i \in \{0, 1, ..., K\}$. "Default" action is i = 0; μ_0 is known and other μ_i are unknown.
- Learner chooses action I_t at round t and receives reward $X_t = \mu_{I_t} + \eta_t$, where η_t is sub-gaussian noise.
- With high probability (1 δ), must satisfy constraint

$$\sum_{t=1}^{n} \mu_{I_t} \ge (1-\alpha)\mu_0 n, \qquad \text{for all } n;$$

You choose *α* and *δ* (e.g. *α* = 0.1 loses up to 10% revenue compared to the default action).

(Pseudo) regret of learner: gap between reward and maximum achievable in hindsight (by always choosing best action):

$$R_n = \sum_{i=1}^{n} (\max_{i} \mu_i - \mu_{I_t}).$$

13: $I_t \leftarrow 0$ ▷ ...default arm otherwise. $\psi(n) \approx \log \log n$ is inspired by a concentration inequality. A good choice is in the paper.

Variants of Algorithm

Unknown µ₀ (learn it by taking default action)
Expected regret/budget (instead of high probability)

Upper Bound on Regret

Theorem: For all rounds *n*, Conservative UCB

Second experiment:

- Varying time horizon *n* with probability $\delta = 1/n$
- Fixed $\alpha = 0.1$

t=1

The Challenge: Minimizing regret requires exploration to find best arm, but maintaining constraint requires choosing default arm very often.

Budget

- Constraint satisfied iff budget is positive.
- Default action is *safe*: it *increases* budget by $\alpha \mu_0$.
- Can use high probability lower bounds for unknown µ_i to bound budget.
- ► Figure: Learner chooses default arm up to round t - 1, accumulating budget Z_{t-1}. Then it can choose a safe arm (blue) keeping Z_t > 0, but an

Lower Bound on Regret

Theorem: There are "hard" environments: any algorithm satisfying constraint must have regret $E_{\mu}[R_n] \ge \Omega(\sqrt{nK} + K/\alpha\mu_0).$

- Can specify number of arms *K*, rounds *n*, and
 reward of default arm µ₀ (sufficiently far from 0 and 1).
- Almost matches Conservative UCB regret.

Adversarial Conservative Bandits

Adversary generates rewards $X_{t,i} \in [0, 1]$ (at round t for arm $i \neq 0$), while $X_{t,0}$ is held constant. Constraint is:

$$\sum_{t=1}^{n} X_{t,I_t} \ge (1-\alpha) \sum_{t=1}^{n} X_{t,0}$$

Safe-play strategy: Act according to "base" any-time high-probability adversarial bandit algorithm (e.g. Exp3-IX of Neu, 2015) when safe. Otherwise, default action.

Discussion

- Conservative UCB pays price for maintaining constraint, getting worse as *α* becomes small
- Eventually almost as good as UCB
- Small advantage to know μ₀, even when unconstrained (α = 1)
- Unbalanced MOSS: better performance but only satisfies constraint at end; no high-probability

unsafe arm (red) would make $Z_t < 0$.

Conservative UCB: choose arm with greatest
 UCB, unless doing so would make the budget's
 LCB negative.

Theorem: Let $t_0 = \max\{t \ge 1 \mid \alpha \mu_0 t \le R_t^{\delta} + \mu_0\}$. When the base algorithm is $\{R_t^{\delta}\}$ admissible w.p. $1 - \delta$ for any *n*, safe-play satisfies budget constraint while achieving regret $R_n \le t_0 + R_n^{\delta}$.

Corollary: Safe-play strategy applied to Exp3-IX gives w.p. $1 - \delta$ (where $L \approx \log n$)

 $R_n \leq O\left(\sqrt{Kn\log K} + KL^2/\alpha^2\mu_0^2\right).$

• Maintaining constraint costs more regret here $(KL^2/\alpha^2\mu_0^2)$ than in stochastic case $(KL/\alpha\mu_0)$. *Can we do better?*

bounds

Summary

 Introduced a new multi-armed bandit setting: actual return must be close to that of a default action *uniformly in time*

- Conservative UCB algorithm (and variants) for stochastic problems; Safe-Play strategy for adversarial
- Conservative UCB: near-optimal
- Gap between lower and upper bound for adversarial case