
Efficient Planning in Large MDPs with
Weak Linear Function Approximation

Roshan Shariff
University of Alberta & Amii
roshan.shariff@ualberta.ca

Csaba Szepesvári
DeepMind & University of Alberta & Amii

szepesva@ualberta.ca

Abstract

Large-scale Markov decision processes (MDPs) require planning algorithms with
runtime independent of the number of states of the MDP. We consider the planning
problem in MDPs using linear value function approximation with only weak
requirements: low approximation error for the optimal value function, and a small
set of “core” states whose features span those of other states. In particular, we
make no assumptions about the representability of policies or value functions of
non-optimal policies. Our algorithm produces almost-optimal actions for any state
using a generative oracle (simulator) for the MDP, while its computation time scales
polynomially with the number of features, core states, and actions and the effective
horizon.

1 Introduction

Markov decision processes (MDPs) are commonly used to model sequential decision making under
uncertainty and have a wide range of applications [see 43, 33, 7, for example]. We consider planning in
large-scale, expected discounted total reward MDPs. Computing an optimal policy in the discounted
setting is known to require “reading” all states at least once [6]. As the state space for most interesting
applications is intractably large if not infinite (“Bellman’s curse of dimensionality”), it is common
to consider restrictions to the problem that can allow efficient calculation of near-optimal actions.
One such relaxation is online planning — the MDP can be accessed through a simulator and we ask
only for a good action at a given state [25, 29]. While in this problem the complexity of computing
a “good action” can be independent of the number of states, the complexity is exponential in the
planning horizon [25]. An alternative idea, which can be traced back to at least the work of Schweitzer
and Seidmann [35], is to assume that one has access to a feature representation (that is, a vector
of features for each state) and the planner needs to work well for those MDPs where the optimal
value function of the MDP can be uniformly well approximated over all states by some appropriate
weighted combination of the features. Since an accurate approximation of the optimal value function
is known to be sufficient to generate near-optimal behavior,1 the problem simplifies to producing a
good estimate of the unknown feature weights with a computation cost that is independent of the
number of states.
In this paper we consider the intersection of these two problem formulations. More precisely, our goal
is to construct planning algorithms that produce an action for any given input state, using black-box
access to the MDP through a simulator which takes a state and an action as input and produces a
random next state and immediate reward. The planner can also access the feature representation of
any state as a 𝑑-dimensional feature vector. Assume that the optimal value function of the MDP can
be uniformly well approximated — to an accuracy of 𝜀approx — as a linear combination of the features
with fixed, but unknown, coefficients. Our goal is a randomized planning algorithm that interacts with

1See Proposition 1; or, for example, Szepesvári [39, Lemma 5.17], Kearns et al. [25, Lemma 5], Kallenberg
[24, Theorem 3.7].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

mailto:roshan.shariff@ualberta.ca?subject=
mailto:szepesva@ualberta.ca?subject=

the simulator poly(1/𝜀, 𝑑, 𝐻, 𝐴, . . .) times to produce an action, such that following this action in
every state results in an 𝑂 (𝜀 + 𝑐𝜀approx)-optimal policy. Here 𝐻 = 1/(1 − 𝛾) is the effective planning
horizon for the discount factor 0 ≤ 𝛾 < 1, which is used in the definition of the values of policies; 𝐴
is the number of actions; and 𝑐 > 0 is an error inflation factor that may depend on 𝛾, 𝑑, and 𝐴.
We call the features “weak” as we only require the optimal value function to be accurately representable
by their linear combinations, in contrast to “strong” features that can accurately represent the value
functions of all policies; in this latter case the problem of efficient planning in the presence of a
simulator is known to have a solution, both in the episodic and discounted settings [44, 28]. As
pointed out by Du et al. [12], with only weak features, the problem of efficient planning has not yet
been solved.

Our Contributions We design a randomized algorithm that positively answers the challenge posed
above under one extra assumption — that the feature vectors of all states lie within the convex hull
of the feature vectors of a few selected “core states” that the algorithm is given. In particular, we
show that the query-complexity and runtime of our algorithm is polynomial in the relevant quantities
and the number of core states, providing a partial positive answer to the previously open problem of
efficient planning in the presence of weak features.
To achieve our result, we start from the approximate linear programming (ALP) approach where
the value function is approximated using the feature vectors. Following Lakshminarayanan et al.
[27], we construct a relaxed ALP that drops all constraints except at the core states. In their work,
Lakshminarayanan et al. gave bounds on the error of the value function that is obtained from solving
this relaxed ALP. The authors also suggested a way to turn this error bound into an efficient planning
method, though without a detailed analysis. The main contribution of the present work is to fill
this gap, in addition to simplifying, strengthening and streamlining the earlier results. In particular,
we propose using a randomized saddle-point solver that substantially reduces the computational
requirements compared to the procedure hinted at by [27].

Paper Organization The rest of the paper is organized as follows: Sections 1.1 and 1.2 give
background on MDPs and introduce the linear programming (LP) approach to planning. Section 2
formally defines the problem. Then, in Section 3, we present the linear program that we start with and
give our first results, bounding the value loss of the policy that can be read out from optimal solutions
of the linear program. Section 4 gives the efficient algorithm to solve the linear program and our
main result. Section 5 discusses related work. The paper is concluded in Section 6. The proofs of the
results are moved to Appendix A in the Supplementary Material.

Notation The set of real numbers is denoted by R, whereas R+ = [0,∞). R𝑑 denotes the vectors
with 𝑑 dimensions, while the 𝑚 × 𝑛 matrices are R𝑚×𝑛. We use bold letters for vectors (𝒓) and
bold capitals for matrices (𝑷); their elements are written as 𝑟𝑖 and 𝑃𝑖, 𝑗 and matrix rows are 𝑷𝑖 . For
vectors of identical dimension, 𝒙 ≤ 𝒚 means element-wise comparison: 𝑥𝑖 ≤ 𝑦𝑖 for each index 𝑖. The
standard basis vector 𝒆𝑖 has 𝑒𝑖,𝑖 = 1 and 𝑒𝑖, 𝑗 = 0 for 𝑖 ≠ 𝑗 , and the constant 0 or 1 vector is denoted by
0, 1 ∈ R𝑑; their dimension depends on the context. All vectors are considered column vectors by
default. The probability simplex over any finite setA is denoted ΔA ≔ { 𝒑 ∈ R |A |+ | ‖𝑝‖1 = 1}. For a
finite set S with cardinality 𝑆 = |S|, we will think of functions 𝑣 : S → R or 𝜑 : S → R𝑑 as vectors
or matrices, respectively, and use both notations: for example, 𝒗 ∈ R𝑆 , 𝑣𝑠, or 𝑣(𝑠); and 𝚽 ∈ R𝑆×𝑑 ,
𝝋𝑠 , or 𝝋(𝑠) where 𝑠 ∈ S. When the domain takes the form S × A with respective cardinalities 𝑆 and
𝐴, we use intuitive double indices of the form 𝑠𝑎, e.g., with 𝑟 : S × A → R we index components of
𝒓 using the notation 𝑟𝑠𝑎 (i.e., 𝑟𝑠𝑎 = 𝑟 (𝑠, 𝑎)). In this case we also write 𝒓 ∈ R𝑆𝐴.
For convenience, an Index of Notation section is included in the Supplementary Material.

1.1 Background

A (finite, discounted) Markov Decision Process (MDP) is defined by the entities (S,A, 𝑷, 𝒓, 𝛾) where
S and A are finite sets of states and actions, respectively. Without loss of generality we let S = [𝑆]
and A = [𝐴], using the notation [𝑛] = {1, . . . , 𝑛} for integers 𝑛 > 0. When the process is in state
𝑠 ∈ S and action 𝑎 ∈ A is chosen, a random reward is received with expectation 𝑟𝑠𝑎 ∈ R and the
process transitions to a new state 𝑠′ ∈ S with probability 𝑃𝑠𝑎,𝑠′ . For convenience, we arrange the
transition probabilities into a matrix 𝑷 ∈ R𝑆𝐴×𝑆 and the rewards into a vector 𝒓 ∈ R𝑆𝐴. Thus, 𝑷 is a

2

row-stochastic matrix — each row 𝑷𝑠𝑎 for a state 𝑠 and action 𝑎 is a valid probability distribution for
the next state.
For our purposes it will be sufficient to consider stationary policies, which we will just call policies.
A policy 𝜋 : S → ΔA is a function from states to probability distributions over actions — we use
𝜋(𝑎 |𝑠) to denote the probability assigned by 𝜋 to action 𝑎 in state 𝑠. Following a policy means that
upon visiting state 𝑠, an action 𝑎 ∼ 𝜋(𝑠) is chosen at random. This gives rise to an infinite sequence
of states, actions, and corresponding rewards. The value 𝑣𝜋 (𝑠) of a policy for a process starting at
state 𝑠 ∈ S is defined as the total expected 𝛾-discounted sum of the rewards incurred:

𝒗𝜋 =
∞∑︁
𝑡=0
(𝛾𝑷𝜋)𝑡 𝒓𝜋 , where [𝒓𝜋]𝑠 =

∑︁
𝑎∈A

𝜋(𝑎 |𝑠) 𝑟𝑠𝑎, and [𝑷𝜋]𝑠,𝑠′ =
∑︁
𝑎∈A

𝜋(𝑎 |𝑠) 𝑃𝑠𝑎,𝑠′ ; (1)

𝒓𝜋 ∈ R𝑆 is the expected reward and 𝑷𝜋 ∈ R𝑆×𝑆 is the state transition matrix. A policy 𝜋∗ is called
optimal if 𝒗𝜋∗ ≥ 𝒗𝜋 for every policy 𝜋, where the inequality is component-wise. Every MDP has an
optimal policy, and all optimal policies have the same value function 𝒗∗, the optimal value function.
Further, there always exist deterministic optimal policies, which concentrate all their probability on a
single action for each state. We will also need 𝒒∗ ∈ R𝑆𝐴, which is defined via 𝒒∗ = 𝒓 + 𝛾𝑷𝒗∗.

1.2 Linear Programming

Our approach to the MDP planning problem is based on the standard linear programming (LP)
formulation; for details, see Puterman [32, §6.9], who swaps the primal and dual problems:

𝑣∗ (𝑠0) = min
{
𝒆T
𝑠0𝒗

�� 𝒗 ∈ R𝑆 , 𝒓 + (𝛾𝑷 − 𝑬)𝒗 ≤ 0
}

(Primal LP)

= max
{
𝝁T𝒓

�� 𝝁 ∈ R𝑆𝐴
+ , 𝒆𝑠0 + 𝝁T (𝛾𝑷 − 𝑬) = 0

}
. (Dual LP)

The matrix 𝑬 : R𝑆𝐴×𝑆 has elements 𝐸𝑠𝑎,𝑠 = 1 and 𝐸𝑠𝑎,𝑠′ = 0 for 𝑠 ≠ 𝑠′. It maps vectors from R𝑆 to
R𝑆𝐴 by duplicating their elements over all actions: [𝑬𝒗]𝑠𝑎 = 𝑣𝑠 for all 𝑠, 𝑎. Both the primal and dual
optimization problems above have the same optimal value: the optimal value of state 𝑠0. The dual
variables 𝝁 are discounted state-action occupancy measures of a policy 𝜋 starting at state 𝑠0:

𝝁T = 𝝆T
𝜋

∞∑︁
𝑡=0
(𝛾 𝑷̃𝜋)

𝑡
, where [𝝆𝜋]𝑠𝑎 = 𝜋(𝑎 |𝑠0) 𝑒𝑠,𝑠0 , and [𝑷̃𝜋]𝑠𝑎,𝑠′𝑎′ = 𝜋(𝑎′ |𝑠′) [𝑷𝜋]𝑠𝑎,𝑠′ ; (2)

𝝆𝜋 ∈ ΔS×A is the initial distribution over state-action pairs and 𝑷̃𝜋 ∈ R𝑆𝐴×𝑆𝐴 is the state-action
transition probability matrix; the state transition matrix 𝑷𝜋 is defined in (1). The constraint
𝒆𝑠0 + 𝝁T (𝛾𝑷 − 𝑬) = 0 enforces that 𝝁 has this form, and is therefore generated by some stochastic
policy. Thus the dual problem can be seen as a linear formulation of policy optimization, where
policies are represented by their occupancy measures and the objective is to maximize expected
discounted reward — in particular, the policy corresponding to any feasible 𝝁 can be obtained by
conditioning on the state: 𝜋𝝁 (𝑎 |𝑠) = 𝜇𝑠𝑎/

∑
𝑎′ 𝜇𝑠𝑎′ for any state with non-zero occupancy measure.

The approximate linear program (ALP) of Schweitzer and Seidmann [35] is obtained from (Primal LP)
by restricting 𝒗 to lie in the span of a feature matrix 𝚽 ∈ R𝑆×𝑑 — 𝒗 = 𝚽𝜽 for 𝜽 ∈ R𝑑 . This reduces
the number of variables from 𝑆 to the feature dimension 𝑑, but is still intractable to solve because
of the many constraints — one for each state-action pair. The relaxed ALP of Lakshminarayanan
et al. [27] addresses this issue by keeping only a small number of constraints that are positive linear
combinations of the original constraints; this is the foundation of our approach.

2 Problem Definition

In the online MDP planning problem, a randomized planner is given a state of the MDP 𝑠0 ∈ S as
input, and needs to return an action [e.g., 25, 16]. Letting 𝜋(𝑎 |𝑠0) denote the probability that action 𝑎
is returned for input 𝑠0, the planner’s value loss at state 𝑠 is defined as 𝑣∗ (𝑠) − 𝑣𝜋 (𝑠). The goal is to
design planning algorithms with a small value loss for every state 𝑠 regardless of the MDP.
For large MDPs, we want the computation time to be independent of the number of states 𝑆 and
depend polynomially on the number of actions and the “planning horizon” 𝐻 = 1/(1 − 𝛾). To
make this even remotely possible, we assume that the planner has access to a suitable feature map
𝝋 : S → R𝑑 (Assumption 1 below), is given a suitable set of “core states” (Assumption 2), and can

3

access a simulator of the MDP (Assumption 3).2 Further, the planner is only required to perform well
if the optimal value function lies uniformly close to the span of the features, which means that

𝜀approx ≔ inf
𝜽∈R𝑑

max
𝑠∈S
|𝑣∗ (𝑠) − 𝝋T

𝑠𝜽 | (3)

is small. To be precise, the planner’s value loss is allowed to degrade with 𝜀approx. Note that the
class of MDPs where 𝜀approx is small for a given feature map is a strict superset of those which are
nearly linear up to the error 𝜀approx in the sense of Jin et al. [19]. Hence, we call the features weak
because we only require that 𝜀approx as defined in (3) be small. Du et al. [12] posed the open problem
of designing efficient online planning algorithms under this condition.
Assumptions. For the convenience of the reader, we now restate our assumptions in a concise form:

1. Features: The planner can access 𝝋(𝑠) ∈ R𝑑 for any state 𝑠 ∈ S. Further, there is some 𝜼 ∈ R𝑑

such that 𝝋T
𝑠𝜼 = 1 for all 𝑠 — this can be ensured easily by adding a “bias” feature that is always 1.

2. Core States: There is a set of core states S∗ ⊂ S (with |S∗ | = 𝑚) that are available to the algorithm,
and the feature vector of every other state can be written as a positive linear combination of the
core state features: 𝚽 = 𝒁𝚽∗ for some non-negative matrix 𝒁 ∈ R𝑆×𝑚

+ , where 𝚽 ∈ R𝑆×𝑑 and
𝚽∗ ∈ R𝑚×𝑑 consist of the stacked feature vectors for all states and the core states, respectively.

3. Simulator: The planner can call a randomized function Simulate(𝑠, 𝑎) that returns 𝑠′ ∼ 𝑷𝑠𝑎 and
a reward 𝑟 with E[𝑟] = 𝑟𝑠𝑎. For simplicity, we assume |𝑟 | ≤ 1.

We do not need to explicitly assume that the feature vectors of all states lie within the convex hull of
the core state features — that is a consequence of Assumptions 1 and 2 (specifically, 1 ∈ span𝚽).3
Under Assumption 2, each of the core states is a “soft state aggregation” [36] that respects the
feature representation. Zanette et al. [46] impose a similar requirement for core states, observing that
“anchoring” the value function at states with “extreme” feature representations (i.e., on the boundary
of the convex hull of feature vectors) results in the values of other states being interpolated (not
extrapolated) from the values of the core states using their respective feature representations — this is
sufficient to accurately deduce the values of all states when 𝜀approx is small [44].
Without assuming extra structure, finding a set of core states requires checking the feature vectors of
all states, which is intractable in large MDPs. It remains an interesting question what extra structure
would make it possible to discover near-minimal core sets with an effort independent of the size of
the MDP. We also note that for some feature maps the size of the minimal core set can be as large
as the number of states 𝑆. Since the run time of our algorithm depends on the size of the core set,
one should obviously avoid such feature maps. It remains an intriguing question whether requiring a
small core set is necessary for efficient planning.
The algorithm we design can work with weaker assumptions — it only accesses 𝝋(𝑠) for the planning
state 𝑠0, the core states, and for the next state 𝑠′ produced by the simulator: (𝑠′, 𝑟) ← Simulate(𝑠, 𝑎),
which it only queries with 𝑠 ∈ {𝑠0} ∪ S∗. We also note in passing that the 𝒁 matrix of Assumption 2
is not used by the algorithm and need not be known; it need only exist. Finally, our results also hold if
the core states are so-called “meta-states” — probability distributions over underlying MDP states;
the simulator must then be able to sample states according to these probability distributions.

3 CoreLP — A Linear Program for Planning with Core States

Throughout this section, we will use 𝑠0 ∈ S to refer to the current planning state — our goal is to
output a random close-to-optimal action 𝑎 ∼ 𝜋(𝑠0). Consider the following result, which follows
immediately from the well-known “performance difference lemma” [23, Lemma 6.1]:
Proposition 1. Let 𝜋 be an arbitrary policy. Then,

max
𝑠∈S

𝑣∗ (𝑠) − 𝑣𝜋 (𝑠) ≤
1

1 − 𝛾 max
𝑠0∈S

E𝑎∼𝜋 (𝑠0) [𝑣∗ (𝑠0) − 𝑞∗ (𝑠0, 𝑎)] .

2With no additional assumptions on the MDP, any online planning algorithm implementing an 𝜀-suboptimal
policy may need up to Ω((1/𝜀)𝐻−1) simulator queries to find each action; this is exponential in the planning
horizon 𝐻 for any constant 𝜀 > 0 — see Kearns et al. [25, Theorem 2], noting that their 𝐻 is different from ours.

3We have 𝒁1 = 𝒁𝚽∗𝜼 = 𝚽𝜼 = 1 for some 𝜼 ∈ R𝑑 , so the rows of 𝒁 must sum to one.

4

In light of this, we will design a randomized planning algorithm that guaranteesE𝑎∼𝜋 (𝑠0) [𝑞∗ (𝑠0, 𝑎)] ≈
𝑣∗ (𝑠0) for any input state 𝑠0. Our approach stems from the relaxed linear program of Lakshminarayanan
et al. [27] — more precisely, we start with the ALP but keep only the constraints corresponding to
the actions of the core states and the current planning state (see Section 1.2). We then construct the
corresponding dual LP, to which we add another constraint that allows us to “read out” an action
distribution from the values of the dual variables.
Recall that S∗ = {𝑠1, . . . , 𝑠𝑚} is the set of core states and define S+ as the sequence (𝑠0, 𝑠1, . . . , 𝑠𝑚).
Note that 𝑠0 is always the first state in S+ but may appear again if it is also a core state. For each of
the 1 + 𝑚 states in S+, we will select the 𝐴 constraints in the ALP corresponding to the state-action
pairs (𝑠𝑖 , 𝑎) ∈ S+ × A — a total of (1 + 𝑚)𝐴 constraints. Unlike the ALP, our linear program
CoreLP is based on the (Dual LP) of Section 1.2; the name refers to the core states and features that,
respectively, constrain and relax it.

Theorem 2 (CoreLP). Suppose Assumptions 1 and 2 hold, 𝑠0 ∈ S, 𝝋0 ≔ 𝝋𝑠0 , 𝑾 ∈ {0, 1} (1+𝑚)𝐴×𝑆𝐴
has rows [𝑾𝑠𝑖𝑎]𝑠𝑖 ∈S+ ,𝑎∈A = 𝒆𝑠𝑖𝑎, and Λ ≔ {𝝀 ∈ R(1+𝑚)𝐴+ | ∑𝑎∈A 𝜆𝑠0𝑎 = 1}. Define

𝑉† = max
{
𝝀T𝑾𝒓

�� 𝝀 ∈ Λ, 𝝋T
0 + 𝝀

T𝑾 (𝛾𝑷 − 𝑬)𝚽 = 0
}
. (CoreLP)

Let 𝝀† ∈ Λ be a maximizer of (CoreLP) and let 𝝅† ∈ ΔA be given by 𝜋† (𝑎) = 𝜆
†
𝑠0𝑎. Then

|𝑉† − 𝑣∗ (𝑠0) | ≤
10𝛾𝜀approx

1 − 𝛾 , 𝑣∗ (𝑠0) −
∑︁
𝑎∈A

𝜋† (𝑎) 𝑞∗ (𝑠0, 𝑎) ≤
20𝛾𝜀approx

1 − 𝛾 .

This bound matches up to constant factors (and improves by a 𝛾 factor) the landmark result of de Farias
and Van Roy [14] for the approximation error of the ALP (defined in Section 1.2). In other words,
core states satisfying Assumption 2 lead to essentially no additional error in the solution of (CoreLP)
compared to the ALP — this was pointed out by Lakshminarayanan et al. [27], whose result we
improve upon in Theorem 5 (Appendix A.1). The theorem also implies that the linear program is both
bounded and feasible, meaning its value is not ±∞; this is an important consideration when relaxing
the ALP [4]. We present the detailed proof in Appendix A.2 of the Supplementary Material.
The feature matrix 𝚽, which in the ALP constrains the value functions of (Primal LP), instead
relaxes the constraint in (Dual LP) to be [𝒆T

𝑠0 + 𝝁
T (𝛾𝑷 − 𝑬)]𝚽 = 0. As a result, 𝝁 may no longer

be a discounted state-action occupancy distribution, although it behaves like one with respect to
expectations of functions in the span of 𝚽 — using the notation of Sections 1.1 and 1.2, any feasible
𝝁 satisfies 𝝁T𝑬 𝒇 = 𝒆T

𝑠0

∑∞
𝑡=0 (𝛾𝑷𝜋)𝑡 𝒇 for some policy 𝜋 and any 𝒇 = 𝚽𝜽; compare this with (2).

Conversely, the 𝑾 matrix constrains 𝝁 to be non-zero only on the actions of core states and the current
planning state: 𝝁 = 𝝀T𝑾. The discounted visits to all other states are “soft-aggregated” as positive
linear combinations of the core states, as discussed in Section 2. Such aggregation is acceptable
because (i) the above relaxation means 𝝁 only needs to be accurate for functions in the span of 𝚽;
and (ii) Assumption 2 ensures that the features of all states lie in the convex hull of the core state
features. Thus the simultaneous constraint and relaxation complement each other, incurring the same
𝑂 (𝜀approx/(1 − 𝛾)) error as the ALP which also restricts value functions to the span of 𝚽.
Significantly, this theorem also specifies how to select an action that achieves the promised value for
the planning state 𝑠0. This is made possible by (i) adding 𝑠0 to the set of core states; and (ii) requiring
(via the definition of Λ) that 𝜇𝑠0𝑎 ≡ 𝜆𝑠0𝑎 sum to one. This last constraint forces 𝝁 to directly represent
the action probabilities at the planning state, not indirectly by being aggregated as linear combinations
of the core state actions. As a result, a solution 𝝁 ≡ 𝝀T𝑾 of (CoreLP) yields an almost-optimal action
distribution 𝜋(𝑎 |𝑠0) = 𝜇𝑠0𝑎 for the planning state 𝑠0.
Unfortunately, the soft state aggregation which makes (CoreLP) tractable to solve (as in Section 4)
comes at a price — 𝝁 directly encodes only an action distribution for the current planning state, not
a policy for other states (unlike the original (Dual LP) of Section 1.2). We believe that solving a
separate optimization problem for each planning state is unavoidable without restricting ourselves to a
compactly representable class of policies; see Section 5 for a discussion of such approaches.

As a final remark, the value loss of the policy resulting from Theorem 2 is 𝑂 (𝛾𝜀approx/(1 − 𝛾)2).
Here, an extra 1/(1− 𝛾) factor is incurred in Proposition 1, while the other 1/(1− 𝛾) factor is incurred
in Theorem 2. This is similar to the bounds obtained in previous works [e.g., 14, 44, 28].

5

4 CoreStoMP — A Stochastic Saddle-Point Algorithm

Having formulated the planning problem as a linear program with few variables and constraints,
the remaining issue is that the constraints still involve quantities of the form 𝑾𝑷𝚽, which cannot
be calculated exactly in time independent of 𝑆. However, since these are actually expectations, the
simulator can be used to estimate them. One possibility would be to estimate 𝑷𝑠𝑎𝚽 ∈ R𝑑 for the initial
and core states and use a plug-in estimator — often called sample average approximation. Instead, we
pursue the stochastic approximation approach — using well-known first-order optimization methods
to directly solve (CoreLP) by using the simulator to produce stochastic estimates of gradients that are
intractable to compute exactly [20, 21]. This optimization-based approach is attractive to us because
the resulting algorithm, by design, is incremental and anytime — the quality of the solution steadily
improves if the algorithm is given more time.
We first rewrite (CoreLP) as an unconstrained “saddle point” problem, retaining only the constraint
introduced by the definition of Λ:

𝑉† = max
𝝀∈Λ

min
𝜽∈R𝑑

[
𝑓 (𝝀, 𝜽) ≔ 𝝀T𝑾𝒓 + 𝝋T

0𝜽 + 𝝀
T𝑾 (𝛾𝑷 − 𝑬)𝚽𝜽

]
. (Saddle CoreLP)

To be able to use first-order methods, we calculate the gradients of 𝑓 :

𝑓𝝀 (𝜽) ≔ ∇𝝀 𝑓 (𝝀, 𝜽) = 𝑾 (𝒓 + (𝛾𝑷 − 𝑬)𝚽𝜽), (4)
𝑓𝜽 (𝝀) ≔ ∇𝜽 𝑓 (𝝀, 𝜽) = 𝝋T

0 + 𝝀
T𝑾 (𝛾𝑷 − 𝑬)𝚽. (5)

Note that 𝑓 is bilinear: its gradient with respect to 𝜽 only depends linearly on 𝝀, and vice versa. The
transition probabilities, which present the major computational challenge, appear only through the
matrix 𝑩 ≔ 𝑾 (𝛾𝑷 − 𝑬)𝚽, whose rows correspond to state-action pairs (𝑠, 𝑎) ∈ S+ × A. Each row
𝑩𝑠𝑎 = 𝛾𝑷𝑠𝑎𝚽 − 𝝋T

𝑠 is the (discounted) expected change in the feature vector when taking action 𝑎

in state 𝑠, which suggests how to estimate it using the simulator — define Δ𝝋(𝑠, 𝑠′) ≔ 𝛾𝝋𝑠′ − 𝝋𝑠

and sample 𝑠′ ∼ 𝑷𝑠𝑎; then Δ𝝋̃ ≔ Δ𝝋(𝑠, 𝑠′) is an unbiased estimator of 𝑩𝑠𝑎. The construction of the
matrix 𝑾 ensures that 𝑠 is either the current state or one of the core states. Further, we only use 𝑠′

through its feature representation 𝝋𝑠′ . Putting all this together, our gradient estimates are:

[𝑓𝝀 (𝜽)]𝑠𝑎 ≔ 𝑟 + Δ𝝋(𝑠, 𝑠′)T𝜽 , ∀𝑠 ∈ S+, 𝑎 ∈ A, where (𝑟, 𝑠′) ∼ Simulate(𝑠, 𝑎), (6)
𝑓𝜽 (𝝀) ≔ 𝝋T

0 + ‖𝝀‖1Δ𝝋(𝑠, 𝑠
′), where (𝑠, 𝑎) ∼ 𝝀/‖𝝀‖1 and 𝑠′ ∼ Simulate(𝑠, 𝑎). (7)

Sampling both gradients requires a total of 1 + (1 + 𝑚)𝐴 queries of the simulator and an additional
𝑂 (𝑑𝑚𝐴) computation time. By slightly abusing notation, we will use 𝝃 ∼ 𝑓𝜽 (𝝀) (and 𝝆 ∼ 𝑓𝝀 (𝜽)) to
denote a random 𝑑-dimensional (resp., (1 + 𝑚)𝐴-dimensional) vector taken from the distribution of
𝑓𝜽 (𝝀) (resp., that of 𝑓𝝀 (𝜽)) as defined above. Finally, we remark in passing that the gradient estimate
[𝑓𝝀 (𝜽)]𝑠𝑎 is the “temporal difference error” [38] of the value function 𝚽𝜽 at state 𝑠 with action 𝑎.
We use these gradient estimates with the Stochastic Mirror-Prox algorithm of Juditsky et al. [22].
Instantiating the algorithm requires several choices — for the dual variables 𝝀 ∈ R(1+𝑚)𝐴+ , we use the
1-norm and the “unnormalized negentropy” regularizer; for the primal variables 𝜽 ∈ R𝑑 we use the
norm ‖𝜽 ‖ = ‖𝚽∗𝜽 ‖2 and the regularizer ‖𝜽 ‖2/2. The result is Algorithm 1 (CoreStoMP).
Theorem 3 (CoreStoMP). Suppose Assumptions 1, 2, and 3 hold, and define

𝐵 ≔
(9/8)

√
𝑚

1 − 𝛾 , 𝐶 ≔
(9/4)

√︁
𝑚(1 + 2 log 𝐴 + 2𝛾 log𝑚)
(1 − 𝛾)2

.

Let 𝝀̂ be the result of running Algorithm 1 for 𝑇 iterations with the parameter 𝐵 and the step size
𝜂 = 𝐶−1

√︁
2/7𝑇 , which requires 2𝑇 (1 + (1 + 𝑚)𝐴) simulator queries. Define 𝝅̂ ∈ ΔA by 𝜋̂(𝑎) = 𝜆̂𝑠0𝑎

(as in Theorem 2) and 𝑎 ∼ 𝝅̂. Then

𝑣∗ (𝑠0) − E[𝑞∗ (𝑠0, 𝑎)] ≤
32𝜀approx

1 − 𝛾 + 21
2(1 − 𝛾)2

√︂
3𝑚(1 + 2 log 𝐴 + 2𝛾 log𝑚)

𝑇
.

Note that the expectation on the left-hand side is both for the randomness of the algorithm and the
action 𝑎. While the bound does not have a direct dependence on the dimension of the features, the
number of core states, 𝑚, must exceed the rank of 𝚽. It is notable that the approximation error does

6

Algorithm 1 CoreStoMP: Stochastic Mirror-Prox for Planning with Core States
Parameters: 𝑇, 𝐵, 𝜂

Initialization: 𝜽0 ← 0 ∈ R𝑑 , [𝜆0]𝑠0𝑎 ← 1/𝐴, [𝜆0]𝑠𝑎 ← 𝛾/((1 − 𝛾)𝑚𝐴) ∀ 𝑠 ∈ S∗, 𝑎 ∈ A
for 𝜏 = 1, 2, . . . , 𝑇 do
(𝜽 ′𝜏 , 𝝀′𝜏) ← ProxUpdate(𝐵, 𝜂, (𝜽𝜏−1, 𝝀𝜏−1), (𝝃, 𝝆)) where 𝝃 ∼ 𝑓𝜽 (𝝀𝜏−1), 𝝆 ∼ 𝑓𝝀 (𝜽𝜏−1)
(𝜽𝜏 , 𝝀𝜏) ← ProxUpdate(𝐵, 𝜂, (𝜽𝜏−1, 𝝀𝜏−1), (𝝃 ′, 𝝆′)) where 𝝃 ′ ∼ 𝑓𝜽 (𝝀′𝜏), 𝝆′ ∼ 𝑓𝝀 (𝜽 ′𝜏)

end for
return

(∑𝑇
𝜏=1𝝀𝜏

)
/𝑇

function ProxUpdate(𝐵, 𝜂, (𝜽 , 𝝀), (𝝃, 𝝆))
𝜽 ← 𝜽 − 𝜂𝝃
𝜽 ′ ← 𝜽/max{1, ‖𝚽∗𝜽 ‖2/𝐵}
𝝀̃ ← exp(log 𝝀 + 𝜂𝝆)
𝝀′𝑠0 ← 𝝀̃𝑠0/‖𝝀̃𝑠0 ‖1 where 𝝀̃𝑠0 ≔ [𝜆̃𝑠0𝑎]𝑎∈A and similarly for 𝝀′.
𝝀′∗ ← (𝛾/(1 − 𝛾))𝝀̃∗/‖𝝀̃∗‖1 where 𝝀̃∗ ≔ [𝜆̃𝑠𝑎]𝑠∈S∗ , 𝑎∈A and similarly for 𝝀′.
return (𝜽 ′, 𝝀′)

end function

not get inflated by a rank-related quantity, as one would expect in the worst-case [28]; this is due to
Assumption 2. The increase in the leading term of the approximation error compared to Theorem 2 is
because of the need to bound the domain of 𝜽 by 𝐵; it remains for future work to avoid this necessity.
Altogether, Algorithm 1 gives the following positive result for the online planning problem for MDPs.

Corollary 4. Under Assumptions 1, 2, and 3, Algorithm 1 is a randomized planning algorithm
that, for any 𝜀 > 0, uses 𝑂 (𝑚2𝐴(1 + log 𝐴 + 𝛾 log𝑚)/𝜀2) simulator queries and poly(𝑑, 𝐴, 𝑚, 1/𝜀)
computation to output an action. Following this action in every state gives a stochastic policy with
value loss at most 𝑂 (𝜀approx/(1 − 𝛾)2 + 𝜀/(1 − 𝛾)3).

5 Related Work

The online MDP planning problem formulation we adopt — where the planner is given an input
state and asked to produce a close-to-optimal action using a generative model of the MDP as a
subroutine — was proposed by Kearns et al. [25] as an alternative to requiring a compact, structured
representation of the MDP. Their approach, also adopted by Kocsis and Szepesvári [26] for their
UCT algorithm, is to build a (sparse) look-ahead tree. Generally, the problem is that the tree needs to
be sufficiently deep and the branching factor can be as large as the number of actions, which leads to
an exponential blow-up as a function of the planning horizon (see footnote 2 on page 4). The focus is
thus to characterize those MDPs where the planning time can be kept polynomial in the effective
horizon [30, 16].

Planning with Feature Representations The broader context of this work is the problem posed by
the recent paper of Du et al. [12], which asks whether “good features” (or representation) are sufficient
in various RL contexts — including efficient online planning in large MDPs with a generative model.
Their main (negative) result states that even when the features are good enough to represent the
action-value functions of all policies up to a uniform error of 𝜀approx, a planning algorithm that is
required to produce an 𝑂 (𝜀approx)-optimal policy needs to check at least 2𝐻 states in some 𝐻-horizon
episodic problems. Lattimore et al. [28] along with Van Roy and Dong [40] point out that if the
feature space is 𝑑-dimensional, the exponential blowup with the planning horizon can be avoided if
the policy only needs to be 𝑂 (𝜀approx

√
𝑑𝐻2)-optimal (where the horizon is 𝐻 = 1/(1 − 𝛾), as their

results are for discounted problems). They also describe an instance of approximate policy iteration
that achieves this bound with 𝑂̃ (𝑑/(𝜀2

approx (1 − 𝛾)4)) queries, where 𝑂̃ hides logarithmic factors.

7

For the finite-horizon setting, Du et al. also present a positive result [12, Theorem C.1] for the
case when a simulator of the environment is available and the optimal action-value function can be
represented with no error (i.e., 𝜀approx = 0). The proposed method is a randomized algorithm — an
instance of fitted value iteration. In addition to the usual inputs, the algorithm also takes as input 𝛿, a
target failure probability. The algorithm returns an optimal policy with probability 1− 𝛿, while issuing
at most poly(𝑑, 𝐻, log(1/𝛿), 1/𝜌) queries to the simulator, where 𝜌 is the minimum action-value gap
that also needs to be known to the algorithm. The algorithm also relies on an oracle to construct
a “core set” of 𝑑 state-action pairs for each stage of the 𝐻-horizon problem whose feature vectors
form a barycentric spanner of the set of all feature vectors at that stage. The idea of the algorithm is
to construct a policy backwards by estimating the action value functions via interpolation: In each
stage, the action-value of each member of the core set is estimated by using sufficiently many rollouts
using the policy constructed for the further stages. The estimated values are used with barycentric
interpolation to produce values for all the other state-action pairs.
For the same finite-horizon setting but allowing for an 𝜀approx error in approximating the optimal
action-value function, Zanette et al. [46] describe a similar algorithm. The main difference is that
their algorithm uses the estimated values in a Monte Carlo procedure in place of policy roll-outs.
They also propose using a core set (which they call the anchor points) and a similar barycentric
extrapolation procedure. Unfortunately, the errors propagate multiplicatively between the stages and
thus, in the worst case, the error can be as large as 𝐶𝐻 where 𝐶 > 1 depends on the choice of the
features. Lattimore et al. [28] show that 1 ≤ 𝐶 ≤

√
𝑑; we note in passing that “state aggregation”

gives rise to 𝐶 = 1.
A number of authors have studied the problem of learning and planning with exact linear optimal
action-value function under various extra conditions. Positive results have been shown for deterministic
MDPs [42], the so-called “low Bellman rank” MDPs [18], and under a specific low variance and
large gap condition [13]. Yang and Wang [44] assume the transition matrix has a linear structure
and also use least-squares regression with data from a pre-selected collection of anchor state/action
pairs. Their assumption — the same as ours — is that the features of all state-action pairs can be
written as convex combinations of the anchoring features. They show that their algorithm needs at
most poly(𝑑, 1/(1 − 𝛾), log(1/𝛿), 𝑚) queries, where 𝑚 is the number of anchor points. Their bound
scales linearly with 𝐻7 where 𝐻 = 1/(1 − 𝛾). Their result also applies to the “misspecified” case
when the linear structure is only true up to a fixed error. In contrast to these results, we do not assume
that the transition matrix has special structure; we make the weaker assumption that the optimal value
function lies close to the span of the features.

Approximate Linear Programming The narrower context of the present work is the so-called
approximate linear programming (ALP) approach to approximate planning in large MDPs, described
in Section 1.2. The seminal work of de Farias and Van Roy [14] showed that the ALP solution’s
error, compared to the optimal value function, is within a constant factor (involving 1/(1 − 𝛾)) of the
best approximation error achievable by linear combinations of the given features. Unfortunately, as
discussed earlier, the ALP has too many constraints to be tractable for large MDPs. Most subsequent
work is therefore aimed at designing methods that keep the approximation guarantees without having
to enumerate all the constraints. Schuurmans and Patrascu [34] and Guestrin et al. [17] propose
using “constraint generation” for problems with additional structure (i.e., factorized transitions), while
de Farias and Van Roy [15] propose randomly generating a subset of constraints from some a priori
fixed distribution. All these methods require computation time that depends on uncontrolled quantities,
such as the so-called induced width of a cost-network [17], or the discrepancy between the sampling
distribution and the (unknown) optimal stationary distribution [15]. The fundamental difficulty is
that when too many constraints are dropped, the linear program may become unbounded. To protect
against this, de Farias and Van Roy [15] add an extra constraint on the optimization variables, but
their bound then degrades to the worst approximation error over this constraint set.
Petrik and Zilberstein [31] demonstrate that the 1/(1 − 𝛾) blow-up of the error in the bound of
de Farias and Van Roy [14] can be tight. They also propose techniques to avoid it — one of them is to
add extra constraints induced by short action sequences; another is to replace the hard constraints in
the ALP with smooth ones with an associated Lagrange multiplier. Desai et al. [11] propose a specific
way to choose the Lagrange multiplier, for which they also obtain error bounds and demonstrate
improved empirical behavior. However, as they build on the work of de Farias and Van Roy [15], their
results inherit the limitations of this latter work: the large number of constraints. Bhat et al. [5] extend

8

the work of Desai et al. [11] to nonparametric function approximation. Lakshminarayanan et al. [27]
depart from constraint sampling and consider the error induced by linearly combining constraints.
Petrik and Zilberstein [31], in addition to the above mentioned contributions, also give error bounds
for the ALP obtained by replacing the transition matrix with a sample-average estimate.

The Dual Linear Program A parallel line of research aims to solve (an approximation of)
the (Dual LP) optimization problem, in contrast to the aforementioned work focusing on (Primal LP).
Recall from Section 1.2 that the dual variables 𝝁 are occupancy distributions over state-action pairs
generated by policies — a common theme in these approaches is to approximate such distributions
using low-dimensional “distribution features”. Wang et al. [41] introduce this idea in the context
of estimating the occupancy distribution for a fixed policy rather than directly solving the planning
problem of finding an optimal policy — the authors suggest using their estimation procedure alongside
iterated policy improvement to find an optimal policy, but do not characterize the convergence rate or
approximation error of the resulting algorithm. More recently, Abbasi-Yadkori et al. [1, 2] propose a
stochastic gradient descent to be used on the Lagrangian derived from the dual LP and derive a policy
suboptimality bound for the resulting poly-time algorithm; however, their results only apply under
some restrictive conditions.
A major advantage of the (Dual LP) is that its solutions directly encode optimal policies (as discussed
in Section 1.2) rather than just value functions. When the dual variables are approximated using
“distribution features”, however, only a restricted class of policies can be represented. For example,
when the distribution features are the occupancy measures of a given set of “base policies”, then
solving the approximate dual LP means finding the best mixture of the base policies. Banĳamali
et al. [3] present an algorithm for this problem — under the additional assumption that the occupancy
measures of the base policies have large overlap. They also show that, in general, this problem is
NP-hard to even approximate — finding the best stochastic policy in a restricted class can be harder
than finding an optimal policy of the MDP. We note in passing that the assumption of a restricted
class of policies that contains a close-to-optimal policy can be considered complementary to our
setting, where the optimal value function is close to the span of a given feature representation.

Primal-Dual Methods There has been significant interest in applying recent advances in primal-
dual online optimization methods to planning in MDPs. Since the (Primal LP) optimizes value
functions while the (Dual LP) optimizes occupancy measures (i.e. policies, indirectly), primal-dual
optimization can be seen as an “actor-critic” approach that finds both policies and value functions
simultaneously. Cogill [10] proposes solving the saddle-point form of the LP in Section 1.2, with
no approximation and assuming full knowledge of the transition matrix. Chen and Wang [9] adopt
the same approach but with stochastic updates using random samples of state transitions. Chen et al.
[8] extend this idea to large MDPs using low-dimensional feature representations to approximate
both the primal and dual variables. Bas-Serrano and Neu [4] identify a “coherence” condition on the
primal and dual feature representations that is necessary to extract close-to-optimal policies from
saddle-point solutions with function approximation — they also point out that, without such an
assumption, the policy suboptimality bound of Chen et al. can scale with the number of states of the
MDP (or worse). We can avoid this issue in our setting because we use the approximate solutions
of (Saddle CoreLP) only to select one action, not an entire policy, unlike all these cited works.

6 Conclusions

We presented an approach to efficient online planning in large-scale 𝛾-discounted MDPs in the
presence of (i) a (relatively) weak 𝑑-dimensional feature representation; (ii) a core set of 𝑚 states
whose features’ convex hull covers the features of other states; and (iii) a stochastic simulator of the
MDP. Our main contribution is an online planning algorithm that, for any target precision 𝜀, achieves
a value loss of 𝑂 (𝜀approx/(1 − 𝛾)2 + 𝜀), where 𝜀approx (3) is the best achievable error in uniformly
approximating the optimal value function of the MDP using the given feature representation. When
the MDP has 𝐴 actions per state, the algorithm’s runtime is poly(1/𝜀, 𝑑, 𝑚, 𝐴, 1/(1 − 𝛾)), which is
independent of the number of states in the MDP. Our work builds upon the approximation error
bound of Lakshminarayanan et al. [27] for relaxations of the approximate linear program.
Du et al. [12] point out that it remains an open problem whether query-efficient planning is possible
in large MDPs using only a simulator and features that have a small approximation error 𝜀approx,

9

with no additional assumptions. Our algorithm resolves this open problem in the special case when
a small set of core states is available, i.e., when 𝑚 = poly(𝑑). It remains an intriguing question
whether this assumption can be removed without jeopardizing efficient planning. Other interesting
questions are whether the results can be extended to smoothed ALPs [11], and whether the adaptive
constraint generation of Petrik and Zilberstein [31] can be used to reduce the dependence on the
planning horizon.
To achieve our results, we make several novel technical contributions: We slightly change the
ALP approach of Lakshminarayanan et al. [27], adding extra constraints and using a saddle-point
formulation. We then show that near-optimal action distributions can be extracted from approximate
solutions of the saddle-point problem. We solve the saddle-point problem using a stochastic
approximation algorithm, Stochastic Mirror-Prox [22] — a first-order primal-dual optimization
method that uses stochastic gradient estimates, which in our case are provided by the simulator. We
believe that these techniques and ideas can find applications in other problems beyond our work.

Broader Impact

Our research has the nature of basic science — we are working on foundational improvements to
reinforcement learning algorithms. We are not targeting any specific applications, and it is hard to
foresee any societal consequences beyond those brought about by advancing the state of our knowledge
of machine learning.

Acknowledgements

Csaba Szepesvári gratefully acknowledges funding from the Canada CIFAR AI Chairs Program, the
Alberta Machine Intelligence Institute (Amii), and the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References
[1] Abbasi-Yadkori, Y., Bartlett, P. L., Chen, X., and Malek, A. Large-scale Markov decision

problems via the linear programming dual (Jan. 2019). arXiv:1901.01992.
[2] Abbasi-Yadkori, Y., Bartlett, P. L., and Malek, A. Linear programming for large-scale Markov

decision problems. In ICML (2014). http://proceedings.mlr.press/v32/malek14.
[3] Banĳamali, E., Abbasi-Yadkori, Y., Ghavamzadeh, M., and Vlassis, N. Optimizing over a

restricted policy class in MDPs. In AISTATS (2019). http://proceedings.mlr.press/v89/banĳamali19a.
[4] Bas-Serrano, J. and Neu, G. Faster saddle-point optimization for solving large-scale Markov

decision processes. In Conference on Learning for Dynamics and Control (L4DC) (2020).
[5] Bhat, N., Farias, V., and Moallemi, C. C. Non-parametric approximate dynamic programming via

the kernel method. In NeurIPS (2012). https://papers.nips.cc/paper/4547-non-parametric-approximate-
dynamic-programming-via-the-kernel-method.

[6] Blondel, V. D. and Tsitsiklis, J. N. A survey of computational complexity results in systems and
control. Automatica, 36:1249–1274 (2000). doi:10.1016/S0005-1098(00)00050-9.

[7] Boucherie, R. J. and van Dĳk, N. M., eds. Markov Decision Processes in Practice, vol. 248
of International Series in Operations Research & Management Science. Springer (2017).
doi:10.1007/978-3-319-47766-4.

[8] Chen, Y., Li, L., and Wang, M. Scalable bilinear 𝜋 learning using state and action features. In
ICML (2018). http://proceedings.mlr.press/v80/chen18e.

[9] Chen, Y. and Wang, M. Stochastic primal-dual methods and sample complexity of reinforcement
learning (Dec. 2016). arXiv:1612.02516.

[10] Cogill, R. Primal-dual algorithms for discounted Markov decision processes. In European
Control Conference (2015). doi:10.1109/ECC.2015.7330554.

[11] Desai, V. V., Farias, V. F., and Moallemi, C. C. A smoothed approximate linear program. In
NeurIPS (2009). https://papers.nips.cc/paper/3799-a-smoothed-approximate-linear-program.

10

https://arxiv.org/abs/1901.01992
http://proceedings.mlr.press/v32/malek14
http://proceedings.mlr.press/v89/banijamali19a
https://papers.nips.cc/paper/4547-non-parametric-approximate-dynamic-programming-via-the-kernel-method
https://papers.nips.cc/paper/4547-non-parametric-approximate-dynamic-programming-via-the-kernel-method
https://dx.doi.org/10.1016/S0005-1098(00)00050-9
https://dx.doi.org/10.1007/978-3-319-47766-4
http://proceedings.mlr.press/v80/chen18e
https://arxiv.org/abs/1612.02516
https://dx.doi.org/10.1109/ECC.2015.7330554
https://papers.nips.cc/paper/3799-a-smoothed-approximate-linear-program

[12] Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F. Is a good representation sufficient for
sample efficient reinforcement learning? In ICLR (2020). arXiv:1910.03016.

[13] Du, S. S., Luo, Y., Wang, R., and Zhang, H. Provably efficient Q-learning
with function approximation via distribution shift error checking oracle. In NeurIPS
(2019). https://papers.nips.cc/paper/9018-provably-efficient-q-learning-with-function-approximation-
via-distribution-shift-error-checking-oracle.

[14] de Farias, D. P. and Van Roy, B. The linear programming approach to approximate dynamic
programming. Operations Research, 51(6):850–865 (Dec. 2003). doi:10.1287/opre.51.6.850.24925.

[15] de Farias, D. P. and Van Roy, B. On constraint sampling in the linear programming approach to
approximate dynamic programming. Mathematics of Operations Research, 29:462–478 (2004).
doi:10.1287/moor.1040.0094.

[16] Feldman, Z. and Domshlak, C. Simple regret optimization in online planning for Markov
decision processes. Journal of Artificial Intelligence Research, 51:165–205 (Sep. 2014).
doi:10.1613/jair.4432.

[17] Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. Efficient solution algorithms for factored
MDPs. Journal of Artificial Intelligence Research, 19:399–468 (2003). doi:10.1613/jair.1000.

[18] Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., and Schapire, R. E. Contextual decision
processes with low Bellman rank are PAC-learnable. In ICML (2017). http://proceedings.mlr.
press/v70/jiang17c.

[19] Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably efficient reinforcement learning with
linear function approximation. In COLT (2020). http://proceedings.mlr.press/v125/jin20a.html.

[20] Juditsky, A. and Nemirovski, A. First-order methods for nonsmooth convex large-scale
optimization, I: General purpose methods. In [37], chap. 5, pp. 121–148. doi:10.7551/mitpress/
8996.003.0007.

[21] Juditsky, A. and Nemirovski, A. First-order methods for nonsmooth convex large-scale
optimization, II: Utilizing problem’s structure. In [37], chap. 6, pp. 149–183. doi:10.7551/
mitpress/8996.003.0008.

[22] Juditsky, A., Nemirovski, A., and Tauvel, C. Solving variational inequalities with Stochastic
Mirror-Prox algorithm. Stochastic Systems, 1(1):17–58 (Jun. 2011). doi:10.1287/10-SSY011.

[23] Kakade, S. and Langford, J. Approximately optimal approximate reinforcement learning. In
ICML (2002). https://homes.cs.washington.edu/~sham/papers/rl/aoarl.pdf.

[24] Kallenberg, L. Markov decision processes (2017). https://goo.gl/yhvrph. Lecture Notes.
[25] Kearns, M., Mansour, Y., and Ng, A. Y. A sparse sampling algorithm for near-optimal planning

in large Markov decision processes. Machine Learning, 49:193–208 (2002). doi:10.1023/A:
1017932429737.

[26] Kocsis, L. and Szepesvári, Cs. Bandit based Monte-Carlo planning. In European Conference
on Machine Learning (2006). doi:10.1007/11871842_29.

[27] Lakshminarayanan, C., Bhatnagar, S., and Szepesvári, Cs. A linearly relaxed approximate
linear program for Markov decision processes. IEEE Transactions on Automatic Control,
63(4):1185–1191 (Apr. 2018). doi:10.1109/TAC.2017.2743163.

[28] Lattimore, T., Szepesvári, Cs., and Weisz, G. Learning with good feature representations in
bandits and in RL with a generative model. In ICML (2020). arXiv:1911.07676.

[29] Mausam and Kolobov, A. Planning with Markov Decision Processes: An AI Perspective, vol. 17
of Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers (2012). doi:10.2200/S00426ED1V01Y201206AIM017.

[30] Munos, R. From bandits to Monte-Carlo tree search: The optimistic principle applied to
optimization and planning. Foundations and Trends® in Machine Learning, 7(1):1–129 (2014).
doi:10.1561/2200000038.

[31] Petrik, M. and Zilberstein, S. Constraint relaxation in approximate linear programs. In ICML
(2009). https://icml.cc/Conferences/2009/papers/340.pdf.

[32] Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley-Interscience, Hoboken, NJ (1994). doi:
10.1002/9780470316887.

11

https://arxiv.org/abs/1910.03016
https://papers.nips.cc/paper/9018-provably-efficient-q-learning-with-function-approximation-via-distribution-shift-error-checking-oracle
https://papers.nips.cc/paper/9018-provably-efficient-q-learning-with-function-approximation-via-distribution-shift-error-checking-oracle
https://dx.doi.org/10.1287/opre.51.6.850.24925
https://dx.doi.org/10.1287/moor.1040.0094
https://dx.doi.org/10.1613/jair.4432
https://dx.doi.org/10.1613/jair.1000
http://proceedings.mlr.press/v70/jiang17c
http://proceedings.mlr.press/v70/jiang17c
http://proceedings.mlr.press/v125/jin20a.html
https://dx.doi.org/10.7551/mitpress/8996.003.0007
https://dx.doi.org/10.7551/mitpress/8996.003.0007
https://dx.doi.org/10.7551/mitpress/8996.003.0008
https://dx.doi.org/10.7551/mitpress/8996.003.0008
https://dx.doi.org/10.1287/10-SSY011
https://homes.cs.washington.edu/~sham/papers/rl/aoarl.pdf
https://goo.gl/yhvrph
https://dx.doi.org/10.1023/A:1017932429737
https://dx.doi.org/10.1023/A:1017932429737
https://dx.doi.org/10.1007/11871842_29
https://dx.doi.org/10.1109/TAC.2017.2743163
https://arxiv.org/abs/1911.07676
https://dx.doi.org/10.2200/S00426ED1V01Y201206AIM017
https://dx.doi.org/10.1561/2200000038
https://icml.cc/Conferences/2009/papers/340.pdf
https://dx.doi.org/10.1002/9780470316887
https://dx.doi.org/10.1002/9780470316887

[33] Rust, J. Numerical dynamic programming in economics. In Handbook of Computational
Economics, vol. 1, chap. 14, pp. 619–729. Elsevier, North Holland (1996). doi:10.1016/S1574-
0021(96)01016-7.

[34] Schuurmans, D. and Patrascu, R. Direct value-approximation for factored MDPs. In NeurIPS
(2001). http://papers.neurips.cc/paper/1981-direct-value-approximation-for-factored-mdps.

[35] Schweitzer, P. J. and Seidmann, A. Generalized polynomial approximations in Markovian
decision processes. Journal of Mathematical Analysis and Applications, 110(2):568–582 (Sep.
1985). doi:10.1016/0022-247X(85)90317-8.

[36] Singh, S. P., Jaakkola, T., and Jordan, M. I. Reinforcement learning with soft state aggregation. In
NeurIPS (1995). https://papers.nips.cc/paper/981-reinforcement-learning-with-soft-state-aggregation.

[37] Sra, S., Nowozin, S., and Wright, S. J., eds. Optimization for Machine Learning. Neural
Information Processing. MIT Press, Cambridge, Massachusetts (2012). doi:10.7551/mitpress/
8996.001.0001.

[38] Sutton, R. S. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44 (1988). doi:10.1007/BF00115009.

[39] Szepesvári, Cs. Efficient approximate planning in continuous space Markovian decision problems.
AI Communications, 14(3):163–176 (2001). https://www.ualberta.ca/~szepesva/papers/aicom.pdf.

[40] Van Roy, B. and Dong, S. Comments on the Du-Kakade-Wang-Yang lower bounds (2019).
arXiv:1911.07910.

[41] Wang, T., Bowling, M., Schuurmans, D., and Lizotte, D. J. Stable dual dynamic programming.
In NeurIPS (2008). https://papers.nips.cc/paper/3179-stable-dual-dynamic-programming.

[42] Wen, Z. and Van Roy, B. Efficient exploration and value function generalization in deterministic
systems. In NeurIPS (2013). https://papers.nips.cc/paper/4972-efficient-exploration-and-value-function-
generalization-in-deterministic-systems.

[43] White, D. J. A survey of applications of Markov decision processes. The Journal of the
Operational Research Society, 44(11):1073–1096 (1993). doi:10.2307/2583870.

[44] Yang, L. and Wang, M. Sample-optimal parametric Q-learning using linearly additive features.
In ICML (2019). http://proceedings.mlr.press/v97/yang19b.

[45] Yu, Y.-L. The strong convexity of von Neumann’s entropy (Jun. 2013). http://www.cs.cmu.edu/
~yaoliang/mynotes/sc.pdf.

[46] Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brunskill, E. Limiting extrapolation in
linear approximate value iteration. In NeurIPS (2019). https://papers.nips.cc/paper/8799-limiting-
extrapolation-in-linear-approximate-value-iteration.

12

https://dx.doi.org/10.1016/S1574-0021(96)01016-7
https://dx.doi.org/10.1016/S1574-0021(96)01016-7
http://papers.neurips.cc/paper/1981-direct-value-approximation-for-factored-mdps
https://dx.doi.org/10.1016/0022-247X(85)90317-8
https://papers.nips.cc/paper/981-reinforcement-learning-with-soft-state-aggregation
https://dx.doi.org/10.7551/mitpress/8996.001.0001
https://dx.doi.org/10.7551/mitpress/8996.001.0001
https://dx.doi.org/10.1007/BF00115009
https://www.ualberta.ca/~szepesva/papers/aicom.pdf
https://arxiv.org/abs/1911.07910
https://papers.nips.cc/paper/3179-stable-dual-dynamic-programming
https://papers.nips.cc/paper/4972-efficient-exploration-and-value-function-generalization-in-deterministic-systems
https://papers.nips.cc/paper/4972-efficient-exploration-and-value-function-generalization-in-deterministic-systems
https://dx.doi.org/10.2307/2583870
http://proceedings.mlr.press/v97/yang19b
http://www.cs.cmu.edu/~yaoliang/mynotes/sc.pdf
http://www.cs.cmu.edu/~yaoliang/mynotes/sc.pdf
https://papers.nips.cc/paper/8799-limiting-extrapolation-in-linear-approximate-value-iteration
https://papers.nips.cc/paper/8799-limiting-extrapolation-in-linear-approximate-value-iteration

Supplementary Material

Index of Notation

For the convenience of the reader, we have collected the most frequently used symbols and their
meanings in the following table:
R,R+ real numbers; non-negative real numbers.
R𝑑 ,R𝑚×𝑛 𝑑-dimensional vectors; matrices of size 𝑚 × 𝑛.
𝒆𝑖 , 0, 1 standard basis vector: 𝑒𝑖,𝑖 = 1 and 𝑒𝑖, 𝑗 = 0 for 𝑖 ≠ 𝑗 ; constant zero or one vectors.
𝒂 ⊕ 𝒃 concatenation of vectors: if 𝒂 ∈ R𝑛 and 𝒃 ∈ R𝑚, then 𝒂 ⊕ 𝒃 ∈ R𝑛+𝑚.
S,A,S∗ sets of states, actions, and core states (Section 1.1 and Assumption 2).
𝑆, 𝐴, 𝑚 number of states |S|, actions |A|, and core states |S∗ |, respectively.
𝑠0, 𝑠, 𝑠

′, 𝑎 planning state (Section 3) and other states ∈ S; actions ∈ A.
𝑷, 𝑬 row-stochastic matrices in R𝑆𝐴×𝑆

+ (Sections 1.1 and 1.2); 𝑬𝑠𝑎 = 𝒆𝑠 ∈ R𝑆 .
𝒓, 𝑟 expected rewards ∈ R𝑆𝐴 (Section 1.1); random reward ∈ [−1, 1] (Assumption 3).
𝛾 ∈ [0, 1) discount factor (Section 1.1).
𝑣, 𝑣∗, 𝑣𝜋 value functions 𝑆 → R.
ΔS ,ΔA sets of probability distributions over states and actions.
𝝁, 𝝅, 𝝅(𝑠) probability distributions in ΔS and ΔA , respectively; policy in S → ΔA .
𝚽, 𝝋𝑠 , 𝝋0 feature matrix ∈ R𝑆×𝑑; state features ∈ R𝑑; features of planning state 𝝋𝑠0 .
𝜀approx approximation error of 𝚽: min𝜽∈R𝑑 ‖𝒗∗ −𝚽𝜽 ‖∞.
𝑾,𝑾∗ constraint matrices in {0, 1} (1+𝑚)𝐴×𝑆𝐴 and {0, 1}𝑚𝐴×𝑆𝐴 (Theorems 2 and 5).
𝝀, 𝝀∗, 𝜽 dual variables ∈ R(1+𝑚)𝐴+ and ∈ R𝑚𝐴

+ , respectively; primal variables ∈ R𝑑 .
Λ,Λ𝛾 ,B dual spaces ⊂ R(1+𝑚)𝐴+ ; primal space ⊂ R𝑑 (Theorem 2 and Lemmas 8 and 11).
‖ · ‖∗ dual norm of ‖ · ‖ : defined by ‖𝒖‖∗ = sup‖𝒙 ‖=1〈𝒖, 𝒙〉.

A Proofs

A.1 Approximation Error for the Linearly Relaxed Approximate LP

We start by recalling and improving the approximation error bounds for the Linearly Relaxed
Approximate Linear Program (LRALP𝝁) of Lakshminarayanan et al. [27].
Theorem 5. Suppose Assumptions 1 and 2 hold. Define the matrix 𝑾∗ ∈ {0, 1}𝑚𝐴×𝑆𝐴 with rows
[𝑾∗]𝑠𝑎 = 𝒆𝑠𝑎 ∈ R𝑆𝐴 (𝑠 ∈ S∗, 𝑎 ∈ A). For any (possibly unnormalized) initial distribution 𝝁 ∈ R𝑆

+ ,

𝑉LRALP (𝝁) ≔ min { 𝝁T𝚽𝜽 | 𝜽 ∈ R𝑑 , 𝑾∗𝒓 +𝑾∗ (𝛾𝑷 − 𝑬)𝚽𝜽 ≤ 0 }. (LRALP𝝁)
The value of (LRALP𝝁) is close to the optimal value of that initial distribution:

|𝑉LRALP (𝝁) − 𝝁T𝒗∗ | ≤
10‖𝝁‖1𝜀approx

1 − 𝛾 .

This result follows from Lakshminarayanan et al. [27, Theorem IV.1], which we will not reproduce
here for brevity. The error bound there is 2‖𝝁‖1 (3𝜀approx + ‖𝐽∗ALP − 𝐽∗LRA‖∞)/(1 − 𝛾), defining

𝐽∗ALP (𝑠) ≔ min { 𝝋T
𝑠𝜽 | 𝜽 ∈ R𝑑 , 𝚽𝜽 ≥ 𝒗∗ },

𝐽∗LRA (𝑠) ≔ min { 𝝋T
𝑠𝜽 | 𝜽 ∈ R𝑑 , 𝑾∗𝑬𝚽𝜽 ≥ 𝑾∗𝑬𝒗

∗ }.
It only remains for us to bound ‖𝐽∗ALP − 𝐽∗LRA‖∞, improving upon Theorem IV.2 [27]:
Lemma 6. Under the conditions of Theorem 5, ‖𝐽∗ALP − 𝐽∗LRA‖∞ ≤ 2𝜀approx.

Proof. By Assumption 1, the optimal value function is well-approximated by the feature representation;
𝒗∗ = 𝚽𝜽 + 𝜹 for some 𝜽 ∈ R𝑑 and 𝜹 ∈ R𝑆 with ‖𝜹‖∞ ≤ 𝜀approx. By Assumption 2, 𝚽 = 𝒁𝚽∗, so
𝒗∗ = 𝒁𝚽∗𝜽 + 𝜹. We use these facts after writing the linear program defining 𝐽∗ALP (𝑠) in its dual form:

𝐽∗ALP (𝑠) = max { 𝝁T𝒗∗ | 𝝁 ∈ R𝑆
+ , 𝝁

T𝚽 = 𝝋T
𝑠 }

= max { 𝝁T (𝒁𝚽∗𝜽 + 𝜹) | 𝝁 ∈ R𝑆
+ , 𝝁

T𝒁𝚽∗ = 𝝋T
𝑠 }

13

By Assumption 1, there is some 𝜼 ∈ R𝑑 such that 𝚽𝜼 = 1. If 𝝁T𝚽 = 𝝋T
𝑠 , then ‖𝝁‖1 = 𝝁T1 = 𝝁T𝚽𝜼 =

𝝋T
𝑠𝜼 = 1, which means that 𝝁T𝜹 ≤ ‖𝜹‖∞. Replacing 𝝁T𝜹 with ‖𝜹‖∞ in the objective increases its

value; we move the resulting constant term out of the maximization:

≤ ‖𝜹‖∞ +max { 𝝁T𝒁𝚽∗𝜽 | 𝝁 ∈ R𝑆
+ , 𝝁

T𝒁𝚽∗ = 𝝋T
𝑠 }

The objective and constraints of this maximization problem depend on 𝝁 only through 𝝁T𝒁. Thus
we can replace 𝝁T𝒁 with 𝝁∗ ∈ R𝑚

+ , which can only expand the feasible set of the maximization and
increase its value:

≤ ‖𝜹‖∞ +max { 𝝁T
∗𝚽∗𝜽 | 𝝁∗ ∈ R𝑚

+ , 𝝁
T
∗𝚽∗ = 𝝋T

𝑠 }

The matrix 𝑼 ∈ {0, 1}𝑚×𝑆 with rows [𝑼𝑠]𝑠∈S∗ = 𝒆𝑠 can be used to “select” the core state features
from 𝚽, giving 𝚽∗ = 𝑼𝚽:

= ‖𝜹‖∞ +max { 𝝁T
∗𝑼𝚽𝜽 | 𝝁∗ ∈ R𝑚

+ , 𝝁
T
∗𝑼𝚽 = 𝝋T

𝑠 }

By a similar argument as before, we see that ‖𝝁T
∗𝑼‖1 = 1. We add 𝝁T

∗𝑼𝜹 + ‖𝜹‖∞ ≥ 0 to the objective
(increasing its value), then move the constant out:

≤ 2‖𝜹‖∞ +max { 𝝁T
∗𝑼𝚽𝜽 + 𝝁T

∗𝑼𝜹 | 𝝁∗ ∈ R𝑚
+ , 𝝁

T
∗𝑼𝚽 = 𝝋T

𝑠 }
= 2‖𝜹‖∞ +max { 𝝁T

∗𝑼𝒗∗ | 𝝁∗ ∈ R𝑚
+ , 𝝁

T
∗𝑼𝚽 = 𝝋T

𝑠 }
= 2‖𝜹‖∞ +min { 𝝋T

𝑠𝜽 | 𝜽 ∈ R𝑑 , 𝑼𝚽𝜽 ≥ 𝑼𝒗∗ },
where the last step is obtained by writing the dual of the linear program in the previous step. Now
observe that the constraint 𝑼𝚽𝜽 ≥ 𝑼𝒗∗ is equivalent to the constraint 𝑾∗𝑬𝚽𝜽 ≥ 𝑾∗𝑬𝒗∗ in the
definition of 𝐽∗LRA — both of them require that 𝝋𝑠𝜽 ≥ 𝑣∗𝑠 for 𝑠 ∈ S∗. Thus we have shown that
𝐽∗ALP (𝑠) − 𝐽∗LRA (𝑠) ≤ 2𝜀approx for all 𝑠 ∈ S. We also know that 𝐽∗ALP (𝑠) ≥ 𝐽∗LRA (𝑠), since 𝐽∗LRA (𝑠) is
a relaxation of 𝐽∗ALP (𝑠). It follows that ‖𝐽∗ALP − 𝐽∗LRA‖∞ ≤ 2𝜀approx. �

A.2 Proof of Theorem 2 — Approximation Error for CoreLP

Theorem 2 (CoreLP). Suppose Assumptions 1 and 2 hold, 𝑠0 ∈ S, 𝝋0 ≔ 𝝋𝑠0 , 𝑾 ∈ {0, 1} (1+𝑚)𝐴×𝑆𝐴
has rows [𝑾𝑠𝑖𝑎]𝑠𝑖 ∈S+ ,𝑎∈A = 𝒆𝑠𝑖𝑎, and Λ ≔ {𝝀 ∈ R(1+𝑚)𝐴+ | ∑𝑎∈A 𝜆𝑠0𝑎 = 1}. Define

𝑉† = max
{
𝝀T𝑾𝒓

�� 𝝀 ∈ Λ, 𝝋T
0 + 𝝀

T𝑾 (𝛾𝑷 − 𝑬)𝚽 = 0
}
. (CoreLP)

Let 𝝀† ∈ Λ be a maximizer of (CoreLP) and let 𝝅† ∈ ΔA be given by 𝜋† (𝑎) = 𝜆
†
𝑠0𝑎. Then

|𝑉† − 𝑣∗ (𝑠0) | ≤
10𝛾𝜀approx

1 − 𝛾 , 𝑣∗ (𝑠0) −
∑︁
𝑎∈A

𝜋† (𝑎) 𝑞∗ (𝑠0, 𝑎) ≤
20𝛾𝜀approx

1 − 𝛾 .

By the definition of Λ ⊂ R(1+𝑚)𝐴+ , we can decompose its elements as 𝝀 = 𝝅 ⊕ 𝝀∗, with 𝝅 ∈ ΔA as in
the statement of the theorem and 𝝀∗ ∈ R𝑚𝐴

+ defined by 𝜆∗,𝑠𝑎 = 𝜆𝑠𝑎 for 𝑠 ∈ S∗, 𝑎 ∈ A — in other
words, Λ � ΔA ×R𝑚𝐴

+ . The main idea of the proof is that when 𝝀 is a solution of (CoreLP), then 𝝀∗
is a solution for the dual form of (LRALP𝝁) from Theorem 5. To make this connection between the
two problems more precise, let us write the saddle-point forms of (LRALP𝝁) and (CoreLP):

𝑉LRALP (𝝁) = max
𝝀∗∈R𝑚𝐴

+

min
𝜽∈R𝑑

[
𝑔𝝁 (𝝀∗, 𝜽) ≔ 𝝀T

∗𝑾∗𝒓 + 𝝁T𝚽𝜽 + 𝝀T
∗𝑾∗ (𝛾𝑷 − 𝑬)𝚽𝜽

]
(Saddle LRALP𝝁)

𝑉† = max
𝝀∈Λ

min
𝜽∈R𝑑

[
𝑓 (𝝀, 𝜽) ≔ 𝝀T𝑾𝒓 + 𝒆T

𝑠0𝚽𝜽 + 𝝀T𝑾 (𝛾𝑷 − 𝑬)𝚽𝜽
]

(Saddle CoreLP)

Lemma 7 (Corresponding (LRALP𝝁) and (CoreLP) solutions). Let 𝝀 ∈ Λ ⊂ R(1+𝑚)𝐴+ be arbitrary
and decompose it as 𝝀 = 𝝅 ⊕ 𝝀∗, where 𝝅 ∈ ΔA and 𝝀∗ ∈ R𝑚𝐴

+ . Define the distribution 𝝁𝝅 ∈ ΔS as

𝝁T
𝝅 ≔

∑︁
𝑎∈A

𝜋(𝑎) 𝑷𝑠0𝑎, where 𝜋(𝑎) ≔ 𝜆𝑠0𝑎 for 𝑎 ∈ A.

Then, for any 𝜽 ∈ R𝑑 , and 𝑔𝝁 (𝝀∗, 𝜽) and 𝑓 (𝝀, 𝜽) as in (Saddle LRALP𝝁) and (Saddle CoreLP),

𝑓 (𝝀, 𝜽) =
∑︁
𝑎∈A

𝜋(𝑎) 𝑟 (𝑠0, 𝑎) + 𝑔𝛾𝝁𝝅 (𝝀∗, 𝜽), where 𝜆∗,𝑠𝑎 = 𝜆𝑠𝑎 for 𝑠 ∈ S∗, 𝑎 ∈ A.

14

𝑷𝑠0𝑎 is the next-state distribution for action 𝑎 at state 𝑠0 — thus the distribution 𝝁𝝅 ∈ ΔS defined
here is the expected next-state distribution when an action 𝑎 ∼ 𝝅 is taken at state 𝑠0. This lemma
therefore connects solutions of (CoreLP) with (LRALP𝝁) when 𝝁 = 𝛾𝝁𝝅 is the discounted next-state
distribution for action 𝑎 ∼ 𝝅.

Proof of Lemma 7. Recall that 𝑾 and 𝑾∗ (defined in Theorems 2 and 5) are related — the rows of
𝑾∗ correspond to state-action pairs in S∗ × A, to which 𝑾 adds 𝐴 more rows corresponding to the
actions at the current planning state 𝑠0. Thus

𝝀T𝑾 =
∑︁
𝑎∈A

𝜋𝑎𝒆
T
𝑠0𝑎 + 𝝀

T
∗𝑾∗, (8)

which upon multiplying by 𝒓 gives

𝝀T𝑾𝒓 =
∑︁
𝑎∈A

𝜋𝑎𝑟𝑠0𝑎 + 𝝀T
∗𝑾∗𝒓. (9)

Using (8) again,

𝒆T
𝑠0 + 𝝀

T𝑾 (𝛾𝑷 − 𝑬) = 𝒆T
𝑠0 +

∑︁
𝑎∈A

𝜋𝑎 (𝛾𝑷𝑠0𝑎 − 𝑬𝑠0𝑎) + 𝝀T
∗𝑾∗ (𝛾𝑷 − 𝑬),

=
[
𝒆T
𝑠0 −

∑︁
𝑎∈A

𝜋𝑎𝑬𝑠0𝑎

]
+ 𝛾

[∑︁
𝑎∈A

𝜋𝑎𝑷𝑠0𝑎

]
+ 𝝀T
∗𝑾∗ (𝛾𝑷 − 𝑬).

The first term is zero because 𝑬𝑠0𝑎 = 𝒆𝑠0 for all 𝑎 ∈ A, and the second term becomes 𝛾𝝁𝝅 when we
substitute the definition of 𝝁𝝅 . We then multiply both sides by 𝚽𝜽:

𝒆T
𝑠0𝚽𝜽 + 𝝀T𝑾 (𝛾𝑷 − 𝑬)𝚽𝜽 = 𝛾𝝁T

𝝅𝚽𝜽 + 𝝀T
∗𝑾∗ (𝛾𝑷 − 𝑬)𝚽𝜽 .

Adding this to (9) gives

𝝀T𝑾𝒓 + 𝒆T
𝑠0𝚽𝜽 + 𝝀T𝑾 (𝛾𝑷 − 𝑬)𝚽𝜽 =

∑︁
𝑎∈A

𝜋𝑎𝑟𝑠0𝑎 + 𝝀T
∗𝑾∗𝒓 + 𝛾𝝁T

𝝅𝚽𝜽 + 𝝀T
∗𝑾∗ (𝛾𝑷 − 𝑬)𝚽𝜽 ,

where we substitute the definitions of 𝑓 (𝝀, 𝜽) and 𝑔𝛾𝝁𝜋
(𝝀∗, 𝜽) to get the desired result:

𝑓 (𝝀, 𝜽) =
∑︁
𝑎∈A

𝜋𝑎𝑟𝑠0𝑎 + 𝑔𝛾𝝁𝝅 (𝝀∗, 𝜽). �

Proof of Theorem 2. Using the decomposition Λ � ΔA ×R𝑚𝐴
+ in (Saddle CoreLP):

𝑉† = max
𝝅∈ΔA

max
𝝀∗∈R𝑚𝐴

+

min
𝜽∈R𝑑

𝑓 (𝝅 ⊕ 𝝀∗, 𝜽) (where 𝝅 ⊕ 𝝀∗ = 𝝀 ∈ Λ)

= max
𝝅∈ΔA

max
𝝀∗∈R𝑚𝐴

+

min
𝜽∈R𝑑

[∑︁
𝑎∈A

𝜋𝑎𝑟𝑠0𝑎 + 𝑔𝛾𝝁𝝅 (𝝀∗, 𝜽)
]

(using Lemma 7)

= max
𝝅∈ΔA

[∑︁
𝑎∈A

𝜋𝑎𝑟𝑠0𝑎 + max
𝝀∗∈R𝑚𝐴

+

min
𝜽∈R𝑑

𝑔𝛾𝝁𝝅 (𝝀∗, 𝜽)
]

= max
𝝅∈ΔA

[
𝑞† (𝝅) ≔

∑︁
𝑎∈A

𝜋𝑎𝑟𝑠0𝑎 +𝑉LRALP (𝛾𝝁𝝅)
]
. (from (Saddle LRALP𝝁))

We now turn our attention to bounding𝑉†. From Theorem 5, we know that |𝑉LRALP (𝛾𝝁𝝅) − 𝛾𝝁T
𝝅𝒗
∗ | ≤

10𝛾𝜀approx/(1 − 𝛾) for any distribution over states 𝝁𝝅 ∈ ΔS . Through a slight abuse of notation, we
define 𝑞∗ (𝑠0, 𝝅) ≔

∑
𝑎 𝜋𝑎 𝑟𝑠0𝑎 + 𝛾𝝁T

𝝅𝒗
∗ as a generalization of the standard 𝑞∗ (𝑠, 𝑎) value function to

action distributions. Note that we will only need 𝑞∗ (𝑠0, ·), for which this abuse is ‘sensible’. Then
for all 𝝅 ∈ ΔA ,

|𝑞† (𝝅) − 𝑞∗ (𝑠0, 𝝅) | = |𝑉LRALP (𝛾𝝁𝝅) − 𝛾𝝁T
𝝅𝒗
∗ | ≤

10𝛾𝜀approx

1 − 𝛾 . (10)

We also know that 𝑣∗ (𝑠0) = max𝝅∈ΔA 𝑞∗ (𝑠0, 𝝅) (the equality happens with 𝝅∗ = 𝒆𝑎∗ for an optimal
action 𝑎∗). Hence,

|𝑉† − 𝑣∗ (𝑠0) | = |max
𝝅∈ΔA

𝑞† (𝝅) − max
𝝅∈ΔA

𝑞∗ (𝑠0, 𝝅) | ≤ max
𝝅∈ΔA
|𝑞† (𝝅) − 𝑞∗ (𝑠0, 𝝅) | ≤

10𝛾𝜀approx

1 − 𝛾 ,

where the last inequality follows from (10).

15

For the second part of the result, let 𝝀† be a maximizer of (CoreLP) and 𝝅† be the action-distribution
component (as before) so that 𝑉† = 𝑞† (𝝅†). Then, using again (10), combined with the last inequality,∑︁

𝑎∈A
𝜋† (𝑎) 𝑞∗ (𝑠0, 𝑎) ≡ 𝑞∗ (𝑠0, 𝝅

†) ≥ 𝑞† (𝝅†) −
10𝛾𝜀approx

1 − 𝛾

= 𝑉† −
10𝛾𝜀approx

1 − 𝛾

≥ 𝑣∗ (𝑠0) −
20𝛾𝜀approx

1 − 𝛾 .

Reordering gives the desired result, namely that 𝑣∗ (𝑠0)−
∑

𝑎 𝜋
† (𝑎) 𝑞∗ (𝑠0, 𝑎) ≤ 20𝛾𝜀approx/(1−𝛾). �

A.3 Proof of Theorem 3 — Error Bounds for the CoreStoMP Algorithm

Theorem 3 (CoreStoMP). Suppose Assumptions 1, 2, and 3 hold, and define

𝐵 ≔
(9/8)

√
𝑚

1 − 𝛾 , 𝐶 ≔
(9/4)

√︁
𝑚(1 + 2 log 𝐴 + 2𝛾 log𝑚)
(1 − 𝛾)2

.

Let 𝝀̂ be the result of running Algorithm 1 for 𝑇 iterations with the parameter 𝐵 and the step size
𝜂 = 𝐶−1

√︁
2/7𝑇 , which requires 2𝑇 (1 + (1 + 𝑚)𝐴) simulator queries. Define 𝝅̂ ∈ ΔA by 𝜋̂(𝑎) = 𝜆̂𝑠0𝑎

(as in Theorem 2) and 𝑎 ∼ 𝝅̂. Then

𝑣∗ (𝑠0) − E[𝑞∗ (𝑠0, 𝑎)] ≤
32𝜀approx

1 − 𝛾 + 21
2(1 − 𝛾)2

√︂
3𝑚(1 + 2 log 𝐴 + 2𝛾 log𝑚)

𝑇
.

The proof of this theorem has two main ingredients: First, in Lemma 8, we show that approximate
solutions of (Saddle CoreLP) can be used to recover near-optimal action distributions for the planning
state 𝑠0 — the approximation quality is measured by the duality gap. Second, in Lemma 11, we bound
the expected duality gap of the Stochastic Mirror-Prox algorithm when specialized to our setting.
Lemma 8 (Approximate (Saddle CoreLP) solutions). Suppose B ⊂ R𝑑 and 𝐶B ≥ 0 are chosen such
that, for any distribution over states 𝝁 ∈ ΔS , there is some 𝜽 ∈ B that is feasible for (LRALP𝝁) and
at most 𝐶B-suboptimal. Define

Λ𝛾 ≔ {𝝀 ∈ Λ | ‖𝝀‖1 = 1/(1 − 𝛾)}, (11)

a subset of the set Λ ⊂ R(1+𝑚)𝐴+ from Theorem 2. Define the B-bounded duality gap of an approximate
solution of (Saddle CoreLP) as

𝛿B (𝝀̂, 𝜽) ≔ max
𝝀∈Λ𝛾

𝑓 (𝝀, 𝜽) − inf
𝜽∈B

𝑓 (𝝀̂, 𝜽), where 𝝀̂ ∈ Λ and 𝜽 ∈ R𝑑 . (12)

For any 𝝀̂ ∈ Λ and 𝜽 ∈ R𝑑 , let 𝝅̂ be the action distribution component of 𝝀̂, as in Theorem 2. Then

𝑣∗ (𝑠0) −
∑︁
𝑎∈A

𝜋̂(𝑎) 𝑞∗ (𝑠0, 𝑎) ≤
20𝛾𝜀approx

1 − 𝛾 + 𝛾𝐶B + 𝛿B (𝝀̂, 𝜽).

This lemma generalizes the second result of Theorem 2 in two ways: First, the Stochastic Mirror-Prox
algorithm does not produce exact solutions of (Saddle CoreLP); the optimization error is measured by
the duality gap — here we see the effect of a non-zero duality gap on the resulting action distribution.
Second, the primal variables 𝜽 in (Saddle CoreLP) have the unbounded domain R𝑑 , whereas the
Stochastic Mirror-Prox algorithm requires the optimization domain to have a bounded diameter; see
Proof of Lemma 11 — Stochastic Mirror-Prox. This lemma shows that restricting 𝜽 to a large-enough
bounded set B only incurs an additional 𝐶B error. Indeed, the second issue is related to the first — an
unbounded form of the duality gap would be infinite for any approximate solution, making it useless
as a measure of optimization accuracy; the B-bounded duality gap therefore addresses both these
issues:
Claim 9. For any 𝝀̂ ∈ Λ, 𝜽 ∈ R𝑑 , 𝜽 ∈ B ⊂ R𝑑 , and 𝛿B (𝝀̂, 𝜽) being the B-bounded duality gap (12),

𝑉† ≤ 𝑓 (𝝀̂, 𝜽) + 𝛿B (𝝀̂, 𝜽).

16

Proof. Let 𝝀∗ ∈ Λ ⊂ R(1+𝑚)𝐴+ be a maximizer of (CoreLP) — this exists because the optimization is
bounded (Theorem 2). Then

0 = 𝝋T
0 + 𝝀

∗T𝑾 (𝛾𝑷 − 𝑬)𝚽 (since 𝝀∗ is feasible for (CoreLP)) (13)
= 𝝋T

0𝜽 + 𝝀
∗T𝑾 (𝛾𝑷 − 𝑬)𝚽𝜽 . (multiplying by 𝜽 ∈ R𝑑)

Since, 𝝀∗ is a maximizer of (CoreLP), 𝑉† = 𝝀∗T𝑾𝒓:
𝑉† = 𝝀∗T𝑾𝒓 + 𝝋T

0𝜽 + 𝝀
∗T𝑾 (𝛾𝑷 − 𝑬)𝚽𝜽 (adding 𝑉† on l.h.s. and 𝝀∗T𝑾𝒓 on r.h.s.)

= 𝑓 (𝝀∗, 𝜽). (definition of 𝑓 from (Saddle CoreLP)) (14)

Assumption 1 tells us that 𝚽𝜼 = 1 for some 𝜼 ∈ R𝑑 — multiplying (13) by 𝜼, we see that 𝝀∗ must
satisfy 1 + 𝛾‖𝝀∗‖1 = ‖𝝀∗‖1, as does any other feasible solution of (CoreLP). In particular, this means
that ‖𝝀∗‖1 = 1/(1 − 𝛾) and so 𝝀∗ ∈ Λ𝛾 . Using the definition of 𝛿B from (12),

𝛿(𝝀̂, 𝜽) ≥ 𝑓 (𝝀∗, 𝜽) − 𝑓 (𝝀̂, 𝜽) (since 𝝀∗ ∈ Λ𝛾 and 𝜽 ∈ B)
= 𝑉† − 𝑓 (𝝀̂, 𝜽). (using (14)) �

Claim 10. For any 𝝀̂∗ ∈ R𝑚𝐴
+ and distribution over states 𝝁 ∈ ΔS , suppose 𝜽 ∈ R𝑑 is feasi-

ble for (LRALP𝝁) and at most 𝐶B-suboptimal. Then, with 𝑔𝝁 being the objective function of
(Saddle LRALP𝝁),

𝑉LRALP (𝛾𝝁) ≥ 𝑔𝛾𝝁 (𝝀̂∗, 𝜽) − 𝛾𝐶B .

Proof. Since 𝜽 is feasible for (LRALP𝝁), 𝑾∗𝒓 +𝑾∗ (𝛾𝑷 − 𝑬)𝚽𝜽 ≤ 0. Multiplying both sides of this
inequality by 𝝀̂T

∗ ≥ 0,

𝝀̂T
∗𝑾∗𝒓 + 𝝀̂T

∗𝑾∗ (𝛾𝑷 − 𝑬)𝚽𝜽 ≤ 0
𝝀̂T
∗𝑾∗𝒓 + 𝛾𝝁T𝚽𝜽 + 𝝀̂T

∗𝑾∗ (𝛾𝑷 − 𝑬)𝚽𝜽 ≤ 𝛾𝝁T𝚽𝜽 (adding 𝛾𝝁T𝚽𝜽 to both sides)
𝑔𝛾𝝁 (𝝀̂∗, 𝜽) ≤ 𝛾𝝁T𝚽𝜽 . (definition of 𝑔 from (Saddle LRALP𝝁))

Note that the choice of 𝝁 does not affect the constraints of (LRALP𝝁), only its objective function
— thus 𝜽 is feasible for the problem defining 𝑉LRALP (𝛾𝝁) and is 𝛾𝐶B suboptimal: 𝛾𝝁T𝚽𝜽 ≤
𝑉LRALP (𝛾𝝁) + 𝛾𝐶B . Substituting this into the last inequality and rearranging gives the desired
result. �

Proof of Lemma 8. As in Lemma 7, we write 𝝀̂ = 𝝅̂ ⊕ 𝝀̂∗ with 𝝅̂ ∈ ΔA and 𝝀̂∗ ∈ R𝑚𝐴
+ and define

𝝁𝝅̂ =
∑

𝑎 𝜋̂𝑎𝑷𝑠0𝑎. By our assumption, there is some 𝜽 ∈ B that is feasible and at most 𝐶B-suboptimal
for (LRALP𝝁) with 𝝁 = 𝝁𝝅̂ — this allows us to apply Claims 9 and 10 below:

𝑣∗ (𝑠0) ≤ 𝑉† +
10𝛾𝜀approx

1 − 𝛾 (Theorem 2)

≤ 𝑓 (𝝀̂, 𝜽) + 𝛿B (𝝀̂, 𝜽) +
10𝛾𝜀approx

1 − 𝛾 (Claim 9)

=
∑︁
𝑎∈A

𝜋̂𝑎𝑟𝑠0𝑎 + 𝑔𝛾𝝁𝝅̂ (𝝀̂∗, 𝜽) + 𝛿B (𝝀̂, 𝜽) +
10𝛾𝜀approx

1 − 𝛾 (Lemma 7)

≤
∑︁
𝑎∈A

𝜋̂𝑎𝑟𝑠0𝑎 +𝑉LRALP (𝛾𝝁𝝅̂) + 𝛾𝐶B + 𝛿B (𝝀̂, 𝜽) +
10𝛾𝜀approx

1 − 𝛾 (Claim 10)

≤
∑︁
𝑎∈A

𝜋̂𝑎𝑟𝑠0𝑎 + 𝛾𝝁T
𝝅̂𝒗
∗ + 𝛾𝐶B + 𝛿B (𝝀̂, 𝜽) +

20𝛾𝜀approx

1 − 𝛾 (Theorem 5)

=
∑︁
𝑎∈A

𝜋̂𝑎𝑞
∗ (𝑠0, 𝑎) + 𝛾𝐶B + 𝛿B (𝝀̂, 𝜽) +

20𝛾𝜀approx

1 − 𝛾 ,

where the last step used ∑
𝑎 𝜋̂𝑎𝑟𝑠0𝑎 +𝛾𝝁T

𝝅̂𝒗
∗ =

∑
𝑎 𝜋̂𝑎 (𝑟𝑠0𝑎 +𝛾𝑷𝑠0𝑎𝒗

∗) = ∑
𝑎 𝜋̂𝑎𝑞

∗ (𝑠0, 𝑎). Rearranging
the inequality completes the proof:

𝑣∗ (𝑠0) −
∑︁
𝑎∈A

𝜋̂𝑎𝑞
∗ (𝑠0, 𝑎) ≤

20𝛾𝜀approx

1 − 𝛾 + 𝛾𝐶B + 𝛿B (𝝀̂, 𝜽). �

17

The following lemma bounds the expected duality gap of the Stochastic Mirror-Prox algorithm when
applied to our setting. We defer the proof to Appendix A.4.
Lemma 11 (Stochastic Mirror-Prox). Using the constants 𝐵 and 𝐶 from Theorem 3, define

B ≔ {𝜽 ∈ R𝑑 | ‖𝚽∗𝜽 ‖2 ≤ 𝐵}, (15)
and let 𝛿B (𝝀̂, 𝜽) be the B-bounded duality gap (12). Then the results of running Algorithm 1 for 𝑇
iterations satisfy

𝜀opt ≔ E[𝛿(𝝀̂, 𝜽)] ≤ 14𝐶
√

3𝑇
.

Proof of Theorem 3. First, observe that 𝑣∗ (𝑠0) − 𝑞∗ (𝑠0, 𝑎) ≤ 2/(1 − 𝛾) for any action 𝑎, since all the
rewards lie in [−1, 1] by Assumption 3. Thus, if 𝜀approx > 1/16 then 32𝜀approx/(1 − 𝛾) > 2/(1 − 𝛾)
and the result is trivially true. From now on, we will assume that 𝜀approx ≤ 1/16.
To prove our result, we will combine Lemmas 8 and 11, for which we need to show that the set B
defined in (15) satisfies the requirements of Lemma 8. Specifically, we need to show that B contains
a feasible solution of the linear program (LRALP𝝁) with sub-optimality bounded by a constant 𝐶B .
Note that the constraints of (LRALP𝝁) do not depend on 𝝁, only the objective function, so the choice
of 𝝁 does not affect feasibility.
Since (LRALP𝝁) is a relaxation of the ALP (see Section 1.2), any feasible solution of the ALP is also
feasible for (LRALP𝝁). De Farias and Van Roy [14, Theorem 2] show that the ALP has a feasible
solution 𝚽𝜽 that is close to 𝒗∗ — more precisely

‖𝚽𝜽 − 𝒗∗‖∞ ≤
2𝜀approx

1 − 𝛾 . (16)

Since ‖𝒗∗‖∞ ≤ 1/(1 − 𝛾), we must have ‖𝚽𝜽 ‖∞ ≤ (1 + 2𝜀approx)/(1 − 𝛾). It follows that

‖𝚽∗𝜽 ‖2 ≤
√
𝑚‖𝚽∗𝜽 ‖∞ =

√
𝑚‖𝚽𝜽 ‖∞ ≤

(1 + 2𝜀approx)
√
𝑚

1 − 𝛾 ≤ (9/8)
√
𝑚

1 − 𝛾 = 𝐵,

where the first inequality is a property of the 2-norm, the next equality is thanks to Assumption 2, and
the last inequality is because we assumed 𝜀approx ≤ 1/16 — this shows that 𝜽 ∈ B. We also have

𝝁T𝚽𝜽 − 𝝁T𝒗∗ ≤ ‖𝝁‖1‖𝚽𝜽 − 𝒗∗‖∞ ≤
2𝜀approx

1 − 𝛾 (using (16) and ‖𝝁‖1 = 1)

|𝝁T𝒗∗ −𝑉LRALP (𝝁) | ≤
10𝜀approx

1 − 𝛾 (using Theorem 5 and ‖𝝁‖1 = 1)

We get the value of 𝐶B by putting these two bounds together:

𝝁T𝚽𝜽 −𝑉LRALP (𝝁) ≤
12𝜀approx

1 − 𝛾 ≕ 𝐶B .

Lemma 8 applied to B with this value of 𝐶B gives

𝑣∗ (𝑠0) −
∑︁
𝑎∈A

𝜋̂(𝑎) 𝑞∗ (𝑠0, 𝑎) ≤
32𝛾𝜀approx

1 − 𝛾 + 𝛿B (𝝀̂, 𝜽).

Taking expectations on both sides and substituting the value of 𝜀opt = E[𝛿B (𝝀̂, 𝜽)] from Lemma 11,

𝑣∗ (𝑠0) − E[𝑞∗ (𝑠0, 𝑎)] ≤
32𝛾𝜀approx

1 − 𝛾 + 14𝐶
√

3𝑇
.

We drop the 𝛾 factor from the leading term and plug in the value of 𝐶 from the statement of Theorem 3
to finish the proof. �

A.4 Proof of Lemma 11 — Stochastic Mirror-Prox

Lemma 11 (Stochastic Mirror-Prox). Using the constants 𝐵 and 𝐶 from Theorem 3, define
B ≔ {𝜽 ∈ R𝑑 | ‖𝚽∗𝜽 ‖2 ≤ 𝐵}, (15)

and let 𝛿B (𝝀̂, 𝜽) be the B-bounded duality gap (12). Then the results of running Algorithm 1 for 𝑇
iterations satisfy

𝜀opt ≔ E[𝛿(𝝀̂, 𝜽)] ≤ 14𝐶
√

3𝑇
.

18

Throughout this section, we will use the definitions of Λ𝛾 and B from (11) and (15), respectively. We
will also define the composite space 𝑍 ≔ Λ𝛾 × B. We will use the norm ‖𝝀‖1 for 𝝀 ∈ Λ𝛾 , whose
dual norm is ‖ · ‖∞. For 𝜽 ∈ B we will use the norm ‖𝜽 ‖ ≡ ‖𝚽𝜽 ‖2 — the corresponding dual norm
enjoys the convenient bound ‖𝚽∗T𝒖‖∗ = sup‖𝜽 ‖ ≤1 𝒖

T𝚽∗𝜽 ≤ ‖𝒖‖2 ≤ ‖𝒖‖1 for any vector 𝒖.4 The last
inequality is due a general property of 𝑝-norms: ‖𝒖‖ 𝑝 ≤ ‖𝒖‖𝑞 whenever∞ ≥ 𝑝 ≥ 𝑞 ≥ 1.

A.4.1 Lipschitz Constants

Our first step will be to bound the Lipschitz constants associated with 𝑓 , the objective function
of (CoreLP). In other words, we are looking for bounds on ‖ 𝑓𝝀 (𝜽)‖∞ and ‖ 𝑓𝜽 (𝝀)‖∗.
First, for any 𝜽 ∈ B we have

‖ 𝑓𝝀 (𝜽)‖∞ = ‖𝑾𝒓 +𝑾 (𝛾𝑷 − 𝑬)𝚽𝜽 ‖∞
≤ ‖𝑾𝒓‖∞ + ‖𝑾 (𝛾𝑷 − 𝑬)𝚽𝜽 ‖∞ (by the triangle inequality)
≤ 1 +max

𝑖
‖𝑾𝑖 (𝛾𝑷 − 𝑬)‖1‖𝚽𝜽 ‖∞. (by definition of ‖ · ‖∞ and Hölder’s inequality)

Now, by the property of norms, ‖𝚽𝜽 ‖∞ ≤ ‖𝚽𝜽 ‖2 ≤ 𝐵. Secondly, 𝑾𝑖𝑷 and 𝑾𝑖𝑬 are probability
distributions, so ‖𝑾𝑖 (𝛾𝑷 − 𝑬)‖1 ≤ 𝛾‖𝑾𝑖𝑷‖1 + ‖𝑾𝑖𝑬‖1 = 1 + 𝛾 and

‖ 𝑓𝝀 (𝜽)‖∞ ≤ 1 + (1 + 𝛾)𝐵 ≤ 2𝐵. (since 𝐵 ≥ 1/(1 − 𝛾))

For the other gradient, we use the bound on dual norms mentioned above:

‖ 𝑓𝜽 (𝝀)‖∗ = ‖(𝝋T
𝑠0 + 𝝀

T𝑾 (𝛾𝑷 − 𝑬))𝚽‖∗
≤ ‖𝒆T

𝑠0 ‖1 + ‖𝝀
T𝑾 (𝛾𝑷 − 𝑬)‖1

≤ 1 + 1 + 𝛾
1 − 𝛾 =

2
1 − 𝛾 ,

where the last inequality uses the fact that (1 − 𝛾)𝝀 is a probability distribution, as are the rows of 𝑾,
𝑷, and 𝑬.

A.4.2 Gradient Estimator Variance

Next, we will bound the variance in the stochastic estimators 𝑓𝝀 (𝜽) and 𝑓𝜽 (𝝀) defined in (6) and (7),
respectively, compared to the true gradients 𝑓𝝀 (𝜽) and 𝑓𝜽 (𝝀) defined in (4) and (5), respectively.

First, we bound E[‖ 𝑓𝝀 (𝜽) − 𝑓𝝀 (𝜽)‖2∞] for any 𝜽 ∈ B by bounding its components. For any state
𝑠 ∈ S+, action 𝑎 ∈ A, and reward 𝑟 , we have

| [𝑓𝝀 (𝜽)]𝑠𝑎 − [𝑓𝝀 (𝜽)]𝑠𝑎 |
= | (𝑟 + 𝛾𝝋T

𝑠′𝜽 − 𝝋T
𝑠𝜽) − (𝑟𝑠𝑎 + 𝛾𝑷𝑠𝑎𝚽𝜽 − 𝝋T

𝑠𝜽) | (for some random 𝑠′ ∼ 𝑷𝑠𝑎)
≤ |𝑟 − 𝑟𝑠𝑎 | + 𝛾 |𝝋T

𝑠′𝜽 − 𝑷𝑠𝑎𝚽𝜽 | (by the triangle inequality)
≤ 2 + 𝛾 | (𝒆T

𝑠′ − 𝑷𝑠𝑎)𝚽𝜽 | (bounded rewards)
≤ 2 + 𝛾‖𝒆T

𝑠′ − 𝑷𝑠𝑎‖1‖𝚽𝜽 ‖∞ (using Hölder’s inequality)
≤ 2 + 2𝛾𝐵 (since ‖𝚽𝜽 ‖∞ ≤ ‖𝚽𝜽 ‖2 ≤ 𝐵)
≤ 2𝐵. (since 𝐵 ≥ 1/(1 − 𝛾))

It follows that ‖ 𝑓𝝀 (𝜽) − 𝑓𝝀 (𝜽)‖2∞ ≤ (2𝐵)2, and the same bound must hold for the expectation.
We will now bound the other gradient, using the following property of Euclidean norms: for any
vector-valued random variable 𝒉 with mean 𝒉̄, E[‖𝒉 − 𝒉̄‖2] = E[‖𝒉‖2] − ‖ 𝒉̄‖2 ≤ E[‖𝒉‖2]. Then,
for a random choice of state 𝑠 ∈ S+, action 𝑎 ∈ A, and next state 𝑠′ ∼ 𝑷𝑠𝑎:

E[‖ 𝑓𝜽 (𝝀) − 𝑓𝜽 (𝝀)‖2∗] = E
[

(𝝋T

0 + ‖𝝀‖1 (𝛾𝝋𝑠′ − 𝝋𝑠)) − (𝝋T
0 + 𝝀

T𝑾 (𝛾𝑷 − 𝑬)𝚽)

2
∗
]

=

(
1

1 − 𝛾

)2
E
[

(𝛾𝝋𝑠′ − 𝝋𝑠) − (𝝀/‖𝝀‖1)T𝑾 (𝛾𝑷 − 𝑬)𝚽

2
∗
]

4More generally, ‖𝝃‖∗ = inf{‖𝜼‖2 | 𝝃T = 𝜼T𝚽∗}, which is non-zero when 𝝃 ≠ 0 and 𝚽∗ has full column rank.

19

Now, since (𝑠, 𝑎) ∼ 𝝀/‖𝝀‖1 and 𝑠′ ∼ 𝑷𝑠𝑎, we have E[𝛾𝝋𝑠′ − 𝝋𝑠] = (𝝀/‖𝝀‖1)T𝑾 (𝛾𝑷 − 𝑬)𝚽, so by
the above property of variance for vector-valued random variables,

≤
(

1
1 − 𝛾

)2
E[‖𝛾𝝋𝑠′ − 𝝋𝑠 ‖2∗]

=

(
1

1 − 𝛾

)2
E[‖(𝛾𝒆𝑠′ − 𝒆𝑠)𝚽‖2∗]

≤
(
1 + 𝛾
1 − 𝛾

)2
≤

(
2

1 − 𝛾

)2
.

A.4.3 Distance-Generating Functions

The Stochastic Mirror-Prox algorithm requires strongly convex distance-generating functions for Λ𝛾

and B with respect to their respective norms. A function 𝜔 : X → R (with domain X ⊂ R𝑛) is said
to be 𝜎-strongly convex (where 𝜎 > 0 is called the modulus of convexity) with respect to a norm ‖ · ‖
on X if any of the following conditions hold for all 𝒙, 𝒚 ∈ X

(i) For all 𝛼 ∈ [0, 1], 𝛼𝜔(𝒙) + (1 − 𝛼)𝜔(𝒚) ≥ 𝜔(𝛼𝒙 + (1 − 𝛼)𝒚) + 𝜎𝛼(1 − 𝛼)‖𝑥 − 𝑦‖2/2.
(ii) 𝜔 is convex and 𝜔(𝒙) ≥ 𝜔(𝒚) + 〈∇𝜔(𝒚), 𝒙 − 𝒚〉 + 𝜎‖𝒙 − 𝒚‖2/2.
(iii) X is convex and 〈∇𝜔(𝒙) − ∇𝜔(𝒚), 𝒙 − 𝒚〉 ≥ 𝜎‖𝒙 − 𝒚‖2.

Condition (i) is the definition of strong convexity; note that it reduces to convexity when 𝜎 = 0.
Conditions (ii) and (iii) are equivalent to the definition under appropriate differentiability conditions on
𝜔 that hold in our setting and when 𝒙, 𝒚 are in the interior of X; see Yu [45] for details. Juditsky et al.
[22] uses “strongly convex” to mean that a function is 1-strongly convex according to condition (iii).
Define the divergence function:

𝐷𝜔 (𝒙, 𝒚) ≔ 𝜔(𝒙) − 𝜔(𝒚) − 〈∇𝜔(𝒚), 𝒙 − 𝒚〉.
When 𝜔 is convex, one can see that 𝐷𝜔 is always non-negative, and by condition (ii) the 𝜎-strong
convexity of 𝜔 is equivalent to 𝐷𝜔 (𝒙, 𝒚) ≥ 𝜎‖𝒙 − 𝒚‖2/2. We will use this equivalence to establish
the strong convexity of our distance-generating functions below. An important operation related to
distance-generating functions is the proximal projection onto X with respect to 𝜔:

Π𝜔 (𝒙, 𝝃) ≔ arg min
𝒚∈X

𝐷𝜔 (𝒚, 𝒙) + 〈𝝃, 𝒚〉, 𝝃 ∈ R𝑛.

The center of X with respect to 𝜔 is defined as 𝒙0 ≔ arg min𝒙∈X 𝜔(𝒙) and the diameter of X is
ΩX ≔ sup𝒚∈X

√︁
2𝐷𝜔 (𝒚, 𝒙0).

A strongly convex distance-generating function can be thought of as a generalization of the squared
norm ‖ · ‖2 — the corresponding divergence generalizes the squared distance function ‖𝒙 − 𝒚‖2;
unlike the squared distance, however, the divergence may not be symmetric. Indeed, when ‖ · ‖ is
an Euclidean norm, and only for such norms, the function 𝜔(𝒙) = ‖𝒙‖2/2 is 1-strongly convex [45,
Proposition 2]. In this special case, the divergence is 𝐷𝜔 (𝒙, 𝒚) = ‖𝒙 − 𝒚‖2/2 and the proximal
projection is simply the Euclidean projection: Π𝜔 (𝒙, 𝝃) = arg min𝒚∈X ‖𝒙 + 𝝃 − 𝒚‖ .
Thus, since the domainB of the primal variables 𝜽 is equipped with the Euclidean norm ‖𝜽 ‖ ≡ ‖𝚽𝜽 ‖2,
we will use the 1-strongly convex distance-generating function 𝜔B (𝜽) = ‖𝜽 ‖2/2. Since B is the
Euclidean ball under this norm, the center of B is 𝜽0 = 0 and its “diameter” (actually the radius, in
this case) is ΩB = 𝐵; 𝜽0 is used as the initial value of 𝜽 in Algorithm 1. The proximal projection is

ΠB (𝜽 , 𝝃) = arg min
𝜽′∈B

‖𝜽 + 𝝃 − 𝜽 ′‖ = 𝜽 + 𝝃
max{1, ‖𝜽 + 𝝃‖/𝐵} .

For the dual variables 𝝀 ∈ Λ𝛾 , our distance-generating function is a modification of the unnormalized
negentropy ℎ(𝝀) = ∑

𝑖 𝜆𝑖 (log𝜆𝑖 − 1). It is well-known that this function is 1-strongly convex on
the set {𝝀 ≥ 0 | ‖𝝀‖1 ≤ 1} [e.g., 45, Theorem 5]. To achieve 1-strong convexity on Λ𝛾 (where
‖𝝀‖1 = 1/(1 − 𝛾) > 1), we use a modified form of this function:

ℎ𝛾 (𝝀) ≔
ℎ((1 − 𝛾)𝝀)
(1 − 𝛾)2

.

20

It follows that ∇ℎ𝛾 (𝝀) = [∇ℎ((1 − 𝛾)𝝀)]/(1 − 𝛾). Thus, defining 𝐷Λ (𝝀′, 𝝀) ≔ 𝐷ℎ𝛾 (𝝀′, 𝝀), we have

𝐷Λ (𝝀′, 𝝀) =
(

1
1 − 𝛾

) [
ℎ((1 − 𝛾)𝝀′)

1 − 𝛾 − ℎ((1 − 𝛾)𝝀)
1 − 𝛾 − 〈∇ℎ((1 − 𝛾)𝝀), 𝝀′ − 𝝀〉

]
=

(
1

1 − 𝛾

) [
ℎ((1 − 𝛾)𝝀′)

1 − 𝛾 − ℎ((1 − 𝛾)𝝀)
1 − 𝛾 − 〈∇ℎ((1 − 𝛾)𝝀), (1 − 𝛾)𝝀

′ − (1 − 𝛾)𝝀〉
1 − 𝛾

]
Now, since (1 − 𝛾)𝝀, (1 − 𝛾)𝝀′ ∈ ΔS+×A and ℎ is strongly convex on this set, we have

𝐷Λ (𝝀′, 𝝀) ≥
(

1
1 − 𝛾

)2 ‖(1 − 𝛾)𝝀 − (1 − 𝛾)𝝀′‖21
2

=
‖𝝀 − 𝝀′‖21

2
.

Thus we have shown that ℎ𝛾 is 1-strongly convex on Λ𝛾 . By the properties of the negentropy
function, we can verify that ℎ𝛾 (𝝀) is minimized for 𝝀0 = 1A/𝐴 ⊕ 𝛾1𝑚𝐴/(1 − 𝛾)𝑚𝐴, i.e. the uniform
distribution over actions concatenated with the scaled uniform distribution over state-action pairs
in S∗ × A — this value is used as the initializer in Algorithm 1. Conversely, ℎ𝛾 (𝝀) is maximized
for 𝝀̄ = 𝒆𝑎 ⊕ 𝛾𝒆𝑠′𝑎′/(1 − 𝛾), i.e. when 𝝀̄ is concentrated on (𝑠0, 𝑎) for some 𝑎 ∈ A and some
(𝑠′, 𝑎′) ∈ S∗ × A. We can verify through a short calculation that

𝐷Λ (𝝀̄, 𝝀0) =
ℓ

(1 − 𝛾)2
, where ℓ ≔ log 𝐴 + 𝛾 log𝑚

ΩΛ =

√︃
2𝐷Λ (𝝀̄, 𝝀0) =

√
2ℓ

1 − 𝛾 .

Finally, the proximal projection onto Λ𝛾 with respect to ℎ𝛾 is

ΠΛ (𝝀, 𝝆) =
𝝀̃0

‖𝝀̃0‖1
⊕ 𝛾𝝀̃∗

(1 − 𝛾)‖𝝀̃∗‖1
, where 𝝀̃ ≔ exp(log 𝝀 + 𝝆),

where 𝝀̃𝑠0 ≔ [𝜆̃𝑠0𝑎]𝑎∈A and 𝝀̃∗ ≔ [𝜆̃𝑠𝑎]𝑠∈S∗ ,𝑎∈A , so that 𝝀̃ = 𝝀̃𝑠0 ⊕ 𝝀̃∗.

A.4.4 The Composite Space

We will now gather together the preceding results and use them to construct a norm and distance-
generating function on the composite optimization domain 𝑍 = Λ𝛾 ×B ⊂ R(1+𝑚)𝐴 ⊕R𝑑 . We closely
follow the construction of Juditsky et al. [22, §4.2]. First, we define the squared norm:

‖𝝀 ⊕ 𝜽 ‖2 ≔ Ω−2
Λ ‖𝝀‖

2
1 +Ω

−2
B ‖𝜽 ‖

2 =

(
1 − 𝛾
√

2ℓ
‖𝝀‖1

)2
+
(

1
𝐵
‖𝜽 ‖

)2
.

The corresponding squared dual norm is

‖𝝆 ⊕ 𝝃‖2∗ ≔ Ω2
Λ‖𝝀‖

2
∞ +Ω2

B ‖𝜽 ‖
2
∗ =

(√
2ℓ

1 − 𝛾 ‖𝝀‖∞
)2
+ (𝐵‖𝜽 ‖)2.

Define the operator 𝐹 (𝝀, 𝜽) ≔ − 𝑓𝝀 (𝜽) ⊕ 𝑓𝜽 (𝝀). Its Lipschitz constant with respect to this norm is

‖𝐹 (𝝀, 𝜽)‖∗ =

√︄
2ℓ‖ 𝑓𝝀 (𝜽)‖2∞
(1 − 𝛾)2

+ 𝐵2‖ 𝑓𝜽 (𝝀)‖2∗

≤

√︄
8ℓ𝐵2

(1 − 𝛾)2
+
(

2𝐵
1 − 𝛾

)2

=
2𝐵
√

1 + 2ℓ
1 − 𝛾 = 𝐶.

Similarly, define the estimator 𝐹̂ (𝝀, 𝜽) ≔ − 𝑓𝝀 (𝜽) ⊕ 𝑓𝜽 (𝝀). Its variance enjoys

E[‖𝐹̂ (𝝀, 𝜽) − 𝐹 (𝝀, 𝜽)‖2∗] ≤ 𝐶2.

We do not repeat the calculation because it is identical to the previous one, since the variances of our
estimators have the same bounds as their squared Lipschitz constants.

21

Finally, we construct the composite distance-generating function:

𝜔𝑍 (𝝀, 𝜽) ≔
(1 − 𝛾)2ℎ𝛾 (𝝀)

2ℓ
+ ‖𝜽 ‖

2

2𝐵2 .

We can verify that this function is 1-strongly convex on 𝑍 with respect to the norm defined above, and
that the diameter of 𝑍 under this function is Ω ≤

√
2.

Proof of Lemma 11. We apply the result of Juditsky et al. [22, Corollary 1] to our setting, where
the Lipschitz constant of 𝐹 is 𝐶, the variance of 𝐹̂ is 𝐶2, and the diameter of 𝑍 is Ω ≤

√
2. Then

the result tells us that a suitable learning rate is 𝜂 = 𝐶−1
√︁

2/7𝑇 , as specified in Theorem 3, and the
resulting bound on the expected duality gap after 𝑇 iterations is

𝜀opt ≔ E[𝛿B (𝝀̂, 𝜽)] ≤
14𝐶
√

3𝑇
. �

22

	Efficient Planning in Large MDPs with Weak Linear Function Approximation
	1 Introduction
	1.1 Background
	1.2 Linear Programming

	2 Problem Definition
	3 CoreLP — A Linear Program for Planning with Core States
	4 CoreStoMP — A Stochastic Saddle-Point Algorithm
	5 Related Work
	6 Conclusions

	Supplementary Material
	Index of Notation
	A Proofs
	A.1 Approximation Error for the Linearly Relaxed Approximate LP
	A.2 Proof of Theorem 2 — Approximation Error for CoreLP
	A.3 Proof of Theorem 3 — Error Bounds for the CoreStoMP Algorithm
	A.4 Proof of Lemma 11 — Stochastic Mirror-Prox
	A.4.1 Lipschitz Constants
	A.4.2 Gradient Estimator Variance
	A.4.3 Distance-Generating Functions
	A.4.4 The Composite Space

