

STOCHASTIC BANDIT PROBLEMS

Sequential decision making with *n* rounds. At round *t*:

MULTI-ARMED BANDITS

- Choose action $A_t \in \{1, ..., k\}$
- Receive reward $Y_t \sim P_{A_t}$

CONTEXTUAL BANDITS

- Receive context $c_t \in \mathcal{C}$
- Choose action $A_t \in \mathcal{A}$
- Receive reward $Y_t \sim P_{c_t,A_t}$

LINEAR BANDITS

- Choose action $X_t \in \mathcal{D} \subset \mathbb{R}^d$
- Mean reward is $\langle \theta^*, X_t \rangle$ with

CONTEXTUAL LINEAR BANDITS

- Known feature map $\varphi : \mathcal{C} \times \mathcal{A} \to \mathbb{R}^d$
- Mean reward is $\langle \theta^*, \varphi(c_t, A_t) \rangle$

LINEAR BANDITS WITH CHANGING DECISION SETS

- $\mathcal{D}_t \doteq \{ \varphi(c_t, a) | a \in \mathcal{A} \}$
- Choosing $X_t \in \mathcal{D}_t$ also chooses $A_t \in \mathcal{A}$
- \mathcal{D}_t encodes everything about reward

REWARD VS. REGRET

Maximizing reward is equivalent to minimizing *regret*:

$$\widehat{R}_{n} \doteq \sum_{t=1}^{n} \max_{x \in \mathcal{D}_{t}} \langle \theta^{*}, x - X_{t} \rangle$$

- Cost of learning: reward lost by having to learn unknown parameter θ^*
- Measures inherent difficulty of learning problem
- This is actually pseudo-regret: includes randomness in algorithm's actions but not unavoidable reward noise

Differentially Private Contextual Linear Bandits Roshan Shariff and Or Sheffet {rshariff, osheffet }@ualberta.ca

unknown parameter $\theta^* \in \mathbb{R}^d$

MOTIVATION AND SUMMARY

Contextual bandits often use contexts and rewards that are private information.

For example, online shopping: context is user's past purchases; actions are recommendations; and reward is whether user accepted recommendation.

We present a contextual linear bandit algorithm that balances learning with privacy preservation.

DIFFERENTIAL PRIVACY

Outputs (actions) don't reveal too much about inputs (contexts, rewards)

DEFINITION: (ε, δ) -Differential Privacy Randomized algorithm \mathcal{A} is (ε, δ) -DP for $\varepsilon \geq 0$ and $\delta \in [0,1]$ if for any subset of outputs O, $\mathbb{P}(\mathcal{A}(S) \in O) \le e^{\varepsilon} \mathbb{P}(\mathcal{A}(S') \in O) + \delta$

DEFINITION: (ε, δ) -Joint Differential Privacy

- Relaxation of (ε, δ) -DP for sequential tasks
- Context c_t revealed by action A_t , but not by later actions
- More suitable for contextual bandits (see lower bound below)

LOWER BOUNDS

DIFFERENTIAL PRIVACY REQUIRES IGNORING CONTEXT Any (ε, δ) -DP contextual bandit algorithm must have linear regret

JOINT DIFFERENTIAL PRIVACY INCURS ADDITIONAL REGRET Any *ε*-DP *k*-armed bandit algorithm must have $\Omega(k \log(n)/\varepsilon)$ regret

Modification of Linear Upper Confidence Bound (LinUCB) algorithm to maintain privacy

ELLIPSOIDAL CONFIDENCE SETS

Constructs Θ_t containing θ^* with high probability, based on: Gram matrix $V_t = \sum_{s < t} X_s X_s^T$; vector $u_t = \sum_{s < t} X_s y_s$

OPTIMISM IN THE FACE OF UNCERTAINTY

Chooses "optimistic" action

 $X_t = \arg \max \text{UCB}_t(x)$ $x \in \mathcal{D}_t$ $UCB_t(x) \doteq \max_{\theta \in \Theta_t} \langle \theta, x \rangle$

DIFFERENTIAL PRIVACY

Uses "noisy" versions of V_t and u_t • Gaussian noise: variance $O(\log n \log^2(1/\delta)/\varepsilon^2)$ Wishart noise: see details in paper

SEQUENCE S

 $S \simeq S'$

NEIGHBORING

INPUT SEQUENCES

Differ only at

round *t*

SEQUENCE S'

 C_1, Y_1

 $C_{2},$

*C*₃,

*C*₁,

*C*₂,

REGRET BOUNDS

EMPIRICAL RESULTS ON SYNTHETIC DATA

UCBt(x)

×,

Re

DIFFERENTIALLY PRIVATE LINEAR UCB

For both Wishart and Gaussian mechanisms, regret is $\mathbb{E}[\hat{R}_n] = \tilde{O}(\sqrt{n} \cdot d^{3/4} / \sqrt{\varepsilon})$ • If suboptimal actions have a Δ reward gap, then $\mathbb{E}[\hat{R}_n] = O(\Delta^{-1} \operatorname{polylog}(n) d^2/\varepsilon)$ • Both cases: multiplicative polylog($1/\delta$) dependence See paper for details and high-probability bounds

Action x