

Re

 Θ_t

DIFFERENTIALLY PRIVATE LINEAR UCB

Modification of Linear Upper Confidence Bound (LinUCB) algorithm to maintain privacy

ELLIPSOIDAL CONFIDENCE SETS

Constructs Θ_t containing θ^* with high probability, based on: Gram matrix $V_t = \sum_{s < t} X_s X_s^T$; vector $u_t = \sum_{s < t} X_s y_s$

OPTIMISM IN THE FACE OF UNCERTAINTY

Uses "noisy" versions of V_t and u_t Gaussian noise: variance $O(\log n \log^2(1/\delta)/\varepsilon^2)$) § Wishart noise: see details in paper

-
-

Chooses "optimistic" action

 $X_t = \arg \max_{\tau \in \mathcal{T}} \text{UCB}_t(x)$ $x \in \mathcal{D}_t$ $UCB_t(x) \doteq \max_{\theta \in \Theta}$ $\theta \in \Theta_t$ $\langle \theta, x \rangle$

■ For both Wishart and Gaussian mechanisms, regret is $E[R]$ $\widehat{\mathsf{R}}$ η_n = 0 $\tilde{O}\big(\sqrt{n}\cdot d^{3/4}/2\big)$ $3/4$ $\mathcal{E}_{\text{}}$ § If suboptimal actions have a Δ reward gap, then $E[R]$ $\widehat{\mathsf{R}}$ \mathcal{L}_n = $O(\Delta^{-1}$ polylog(n) d^2/ε **• Both cases: multiplicative polylog(1/** δ **) dependence** § See paper for details and high-probability bounds

Action x

Differentially Private Contextual Linear Bandits Roshan Shariff and Or Sheffet {rshariff,osheffet}@ualberta.ca

unknown parameter $\theta^* \in \mathbb{R}^d$

DIFFERENTIAL PRIVACY

REGRET BOUNDS

-
-
-
-

EMPIRICAL RESULTS ON SYNTHETIC DATA

CONTEXTUAL BANDITS

- Receive *context* $c_t \in \mathcal{C}$
- Choose *action* $A_t \in \mathcal{A}$
- **■** Receive *reward* $Y_t \sim P_{c_t, A_t}$

- Relaxation of (ε, δ) -DP for sequential tasks • Context c_t revealed by action A_t , but not by *later* actions
- § More suitable for contextual bandits (see lower bound below)

JOINT DIFFERENTIAL PRIVACY INCURS ADDITIONAL REGRET Any ε -DP k-armed bandit algorithm must have $\Omega(k \log(n)/\varepsilon)$ regret

CONTEXTUAL LINEAR BANDITS

- \overline{S} Known feature map $\overline{\varphi}: C \times \mathcal{A} \to \mathbb{R}^d$
- Mean reward is $\langle \theta^*, \dot{\varphi}(c_t, A_t) \rangle$

SEQUENCE S'

 $S \simeq S'$

 c_3 , Y_3

SEQUENCE S

 c_{1} ,

 c_2 ,

LINEAR BANDITS WITH CHANGING DECISION SETS

 $D_t \doteq \{ \varphi(c_t, a) | a \in \mathcal{A} \}$

- Choosing $X_t \in \mathcal{D}_t$ also chooses $A_t \in \mathcal{A}$
- \bullet \mathcal{D}_t encodes everything about reward

LINEAR BANDITS

- Choose *action* $X_t \in \mathcal{D} \subset \mathbb{R}^d$
- Mean reward is $\langle \theta^*, X_t \rangle$ with
-

MULTI-ARMED BANDITS

- Choose *action* $A_t \in \{1, ..., k\}$
- **•** Receive *reward* $Y_t \sim P_{A_t}$

We present a contextual linear bandit algorithm that balances learning with privacy preservation.

Outputs (actions) don't reveal too much about inputs (contexts, rewards)

DEFINITION: (ε, δ) -Differential Privacy $\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$ Randomized algorithm $\mathcal A$ is (ε, δ) -DP for $\varepsilon \geq 0$ and $\delta \in [0,1]$ if for any subset of outputs O , $\mathbb{P}(\mathcal{A}(S) \in O) \leq e^{\varepsilon} \mathbb{P}(\mathcal{A}(S') \in O) + \delta$

DEFINITION: (ε, δ)-Joint Differential Privacy

NEIGHBORING

INPUT SEQUENCES

Differ only at

round t

 c_1 , Y_1

 $c'_2, \t Y'_2$

 $\ddot{\cdot}$

 c_3 ,

STOCHASTIC BANDIT PROBLEMS

Sequential decision making with n rounds. At round t :

DIFFERENTIAL PRIVACY

DIFFERENTIAL PRIVACY REQUIRES IGNORING CONTEXT Any (ε, δ) -DP contextual bandit algorithm must have linear regret

LOWER BOUNDS

⟨&

 \blacktriangleright

∗

 θ

UCB

 $(x)^1$

 $\frac{1}{\sqrt{2}}$

∗

REWARD VS. REGRET

Maximizing reward is equivalent to minimizing *regret*:

$$
\hat{R}_n \doteq \sum_{t=1}^n \max_{x \in D_t} \langle \theta^*, x - X_t \rangle
$$

- § Cost of learning: reward lost by having to learn unknown parameter θ^*
- § Measures inherent difficulty of learning problem
- § This is actually *pseudo-regret*: includes randomness in algorithm's actions but not unavoidable reward noise

MOTIVATION AND SUMMARY

Contextual bandits often use contexts and rewards that are **private information**.

For example, online shopping: **context** is user's past purchases; **actions** are recommendations; and **reward** is whether user accepted recommendation.