Exploiting Symmetries to Construct Efficient MCMC Algorithms With an Application to SLAM

Roshan Shariff, András György, Csaba Szepesvári {roshan.shariff, gyorgy, szepesva}@ualberta.ca

Overview

Goal: Design efficient sampling methods

- Studied in CS, operations research ("Monte Carlo"), statistics, etc.
- Markov Chain Monte Carlo: a distribution-independent method
- ► Gibbs sampling, rejection sampling, slice sampling, etc.
- ► The Metropolis-Hastings (MH) algorithm

Here: Metropolis-Hastings moves based on group actions

- can take advantage of (approximate) symmetries
- ▶ a powerful, elegant, convenient, efficient family of algorithms

Markov Chain Monte Carlo (MCMC)

To sample from probability distribution p(x) dx using MCMC:

- Random walk X_0, X_1, X_2, \ldots
- $> X_0 \sim p_0(x) dx$ (initial distribution)
- $X_{i+1} \sim k(x' \mid X_i) \, dx' \quad (transition \ kernel)$

Choose transition kernel to make X_i converge in distribution to P

Metropolis-Hastings (MH)

MCMC transition kernel that adds a *rejection* step to a given *proposal* kernel q:

1. Propose $X'_{i+1} \sim q(x' \mid X_i) dx'$

2. Accept $X_{i+1} \coloneqq X'_{i+1}$ with probability $\alpha(X_i, X'_{i+1})$

3. Reject otherwise: $X_{i+1} \coloneqq X_i$

This is the "textbook" algorithm, and with acceptance probability

$$\alpha(x, x') \coloneqq \min\left\{1, \frac{p(x') q(x \mid x')}{p(x) q(x' \mid x)}\right\}$$

produces a *reversible* Markov transition kernel *k*:

 $p(x) k(x' \mid x) dx dx' = p(x') k(x \mid x') dx dx'$

A More General MH Kernel

Unlike the textbook case, target distribution P(dx) and proposal kernel Q(dx' | x) may not have densities w.r.t. a common reference measure

Theorem (Tierney, 1998, Theorem 2)

For any $Q(dx' \mid x)$ and P(dx), with an appropriate α , the MH algorithm gives a Markov kernel K satisfying

 $P(dx) K(dx' \mid x) = P(dx') K(dx \mid x')$

An appropriate acceptance probability:

- ► Define $\mu(dx, dx') = P(dx) Q(dx' \mid x)$ and $\mu^T(dx, dx') = \mu(dx', dx)$
- Find $R \subset X \times X$ on which μ and μ^T are mutually absolutely

continuous, and outside which they are mutually singular

Find the Radon-Nikodym derivative

$$r(x, x') = \frac{d\mu_R}{d\mu_R^T}(x, x')$$

such that $0 < r(x, x') < \infty$ and r(x, x') = 1/r(x', x) for all $x, y \in X$ Use the acceptance probability

$$\alpha(x, x') = \begin{cases} \min\{1, r(x', x)\}, & \text{if } (x, x') \in \mathbb{R} \\ 0 & \text{otherwise} \end{cases}$$

... a powerful result, but not straightforward to use

Motivating Example	Pro
Sampling from a probability density $p(x, y)$ (center) on $\mathbb{R}^2 \setminus \{(0, 0)\}$ having factors p_1 (left) and p_2 (right)	Sam mea • g • F • P • λ
MH with normally distributed proposal?	MH
 q(x', y' x, y) = N((x, y), (σ_x, σ_y)) Hard to choose σ_x, σ_y: if too small, chain doesn't move between modes; otherwise, high rejection rate 	Giv x) = 1. S
 Gibbs sampling? At each step, modify either <i>x</i> or <i>y</i> with equal probability: either 	2. C
 x' ~ p(·, y) or y' ~ p(x, ·) ▶ Doesn't move between ±X modes and ±Y modes ▶ Transition kernel concentrated on X, Y axes: no density ▶ Only works when moving along linear subspaces 	3. A 4. R whe
Change of variables? • Use polar coordinates (r, θ) • p_1 depends only on r , and p_2 only on θ	⊳ q ⊳ C ⊳ β
 Gibbs sampling gives fast and no-reject MCMC kernel What if re-parametrization is non-obvious? Can we directly use 	Exp
<i>symmetries</i> ? (p_1 symmetric under rotation, p_2 under scaling)	Sup
	Sup
Groups and Actions	► C
Groups and Actions	► p
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$	 ▶ p The If fa If
 A group <i>G</i> is a set of elements, with A binary operation, written <i>a</i> · <i>b</i> or <i>ab</i> with <i>a</i>, <i>b</i>, <i>ab</i> ∈ <i>G</i> A unit element <i>e</i>, with <i>eg</i> = <i>ge</i> = <i>g</i> for all <i>g</i> ∈ <i>G</i> 	► p The ► If
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$ It <i>acts</i> on (state) space <i>X</i> with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for $g, h \in G, x \in X$	► p The ► If fa ► If Idea
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$ It <i>acts</i> on (state) space <i>X</i> with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$	 <i>p</i> The If <i>fa</i> <i>i</i> <i>i</i>
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$ It <i>acts</i> on (state) space <i>X</i> with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for $g, h \in G, x \in X$ Then <i>G</i> elements are <i>invertible transformations</i> of <i>X</i>	 <i>p</i> The If <i>fa</i> <i>i</i> <i>i</i>
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$ It <i>acts</i> on (state) space <i>X</i> with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for $g, h \in G, x \in X$ Then <i>G</i> elements are <i>invertible transformations</i> of <i>X</i> • unit is identity transformation: $ex := T(e, x) = x$	 <i>p</i> The If <i>fa</i> <i>i</i> <i>i</i>
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$ It <i>acts</i> on (state) space <i>X</i> with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for $g, h \in G, x \in X$ Then <i>G</i> elements are <i>invertible transformations</i> of <i>X</i> • unit is identity transformation: $ex := T(e, x) = x$ • group operation is composition: $ghx := (gh)x = g(hx)$	 <i>p</i> The If <i>fa</i> If <i>fa</i> If <i>fa</i> <i>i</i> <i>fa</i> <i>i</i> <i>fa</i> <i>i</i> <i>fa</i> <i>i</i> <i>fa</i> <i>i</i> <i>i</i><!--</td-->
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$ It <i>acts</i> on (state) space <i>X</i> with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for $g, h \in G, x \in X$ Then <i>G</i> elements are <i>invertible transformations</i> of <i>X</i> • unit is identity transformation: $ex := T(e, x) = x$ • group operation is composition: $ghx := (gh)x = g(hx)$ Invariant Measures Theorem (Haar) Every locally compact topological group has a unique (up to positive scale)	 <i>p</i> The If <i>fa</i> If Idea <i>L</i> <i>F</i> For <i>For</i> <i>Corr</i> <i>Sin</i> <i>A ra</i> <i>n</i>
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element e , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every g , with $g^{-1}g = gg^{-1} = e$ It acts on (state) space X with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for $g, h \in G, x \in X$ Then <i>G</i> elements are <i>invertible transformations</i> of X • unit is identity transformation: $ex := T(e, x) = x$ • group operation is composition: $ghx := (gh)x = g(hx)$ Invariant Measures Theorem (Haar) Every locally compact topological group has a unique (up to positive scale factor) left-invariant measure μ : $\mu(gA) := \mu(\{ga \mid a \in A\}) = \mu(A), g \in G, A \subset G$ Examples:	 <i>p</i> The If If a If and w w
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element e , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every g , with $g^{-1}g = gg^{-1} = e$ It acts on (state) space X with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for $g, h \in G, x \in X$ Then <i>G</i> elements are <i>invertible transformations</i> of X • unit is identity transformation: $ex \coloneqq T(e, x) = x$ • group operation is composition: $ghx \coloneqq (gh)x = g(hx)$ Invariant Measures Theorem (Haar) Every locally compact topological group has a unique (up to positive scale factor) left-invariant measure μ : $\mu(gA) \coloneqq \mu(\{ga \mid a \in A\}) = \mu(A), g \in G, A \subset G$	 <i>p</i> The If fa If afa If afa and w assu
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$ It <i>acts</i> on (state) space <i>X</i> with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for <i>g</i> , $h \in G$, $x \in X$ Then <i>G</i> elements are <i>invertible transformations</i> of <i>X</i> • unit is identity transformation: $ex := T(e, x) = x$ • group operation is composition: $ghx := (gh)x = g(hx)$ Invariant Measures Theorem (Haar) Every locally compact topological group has a unique (up to positive scale factor) left-invariant measure μ : $\mu(gA) := \mu(\{ga \mid a \in A\}) = \mu(A), g \in G, A \subset G$ Examples: • Lebesgue measure on \mathbb{R}^n is invariant under vector addition • $\mu(dx) = x^{-1} dx$ is invariant on \mathbb{R}^{\times}_+ • Rotations of \mathbb{R}^2 can be represented as an angle in $[0, 2\pi)$; the	 <i>p</i> The If If a If and w w
A group <i>G</i> is a set of elements, with • A binary operation, written $a \cdot b$ or ab with $a, b, ab \in G$ • A unit element <i>e</i> , with $eg = ge = g$ for all $g \in G$ • An inverse g^{-1} for every <i>g</i> , with $g^{-1}g = gg^{-1} = e$ It <i>acts</i> on (state) space <i>X</i> with action $T : G \times X \to X$ if: • $T(e, x) = x$ for $x \in X$ • $T(gh, x) = T(g(T(h, x)))$ for $g, h \in G, x \in X$ Then <i>G</i> elements are <i>invertible transformations</i> of <i>X</i> • unit is identity transformation: $ex \coloneqq T(e, x) = x$ • group operation is composition: $ghx \coloneqq (gh)x = g(hx)$ Invariant Measures Theorem (Haar) Every locally compact topological group has a unique (up to positive scale factor) left-invariant measure μ : $\mu(gA) \coloneqq \mu(\{ga \mid a \in A\}) = \mu(A), g \in G, A \subset G$ Examples: • Lebesgue measure on \mathbb{R}^n is invariant under vector addition • $\mu(dx) = x^{-1} dx$ is invariant on \mathbb{R}^{\times}_+	 <i>p</i> The If a a b a b a b a <

 $\chi : G \to \mathbb{R}_+$: then $\chi(e) = 1$ and $\chi(gh) = \chi(g)\chi(h)$

• Example: Haar measure μ under *right* multiplication: $\mu(Ag) = \Delta_r^G(g) \,\mu(A)$ with right modulus $\Delta_r^G : G \to \mathbb{R}_+$

oblem Statement

mple from probability distribution P on X having density p w.r.t. easure λ : $P(dx) = p(x) \lambda(dx)$. For i = 1, ..., m, group G_i acts on XHaar measure μ_i on G_i proposal kernel on G_i : $q_i(g \mid x) \mu_i(dg)$ ($g \in G_i, x \in X$)

 Λ is $\chi_i : G_i \to \mathbb{R}_+$ -relatively invariant under G_i

H With Group Actions

ven, for i = 1, ..., m, mixture coefficients a(i, x) with $\sum_i a(i \mid x)$ = 1 (for all $x \in X$):

Sample $i \sim a(\cdot | x)$ and $g \sim q_i(g | x) \mu_i(dg)$ Calculate

 $\alpha(i, x, g) \coloneqq \frac{\chi_i(g) a(i \mid gx) p(gx) \bar{q}_i(g^{-1} \mid gx)}{\Delta_r^{G_i}(g) a(i \mid x) p(x) \bar{q}_i(g \mid x)}$

- Accept $x' \coloneqq gx$ with probability min{1, $\alpha(i, x, g)$ }
- Reject otherwise: x' = x

- $\bar{q}_i(g \mid x) \coloneqq \int_{G_{i,x}} q_i(gh \mid x) \beta_{i,x}(dh)$
- $G_{i,x} \coloneqq \{g \in G_i \mid gx = x\}$ is the *stabilizer subgroup* of G_i at $x \in X$ $\beta_{i,x}$ is a Haar measure on $G_{i,x}$ with $\beta_{i,x}(G_{i,x}) = 1$

ploiting Symmetries

- ppose $p(x) \propto \prod_{i=1}^{k} p_i(x)$ for $x \in X$ Groups H_i (i = 1, ..., k) act on X $p_i(hx) = p_i(x)$ for $h \in H_i$
- en each group H_i is a *symmetry* of factor p_i ; $\alpha(i, x, g)$ simplifies: If $G_i \subset H_j$ for some *j*, then $p_j(gx) = p_j(x)$ for $g \in G_i$ and the p_j factor cancels
- If $q_i(g \mid x) \propto \chi_i(g) p_i(gx)$ then the $\chi_i, \Delta_r^{G_i}$, and p_i factors cancel
- eally, only non-symmetric terms contribute to α
- Lower rejection rate
- Faster to compute

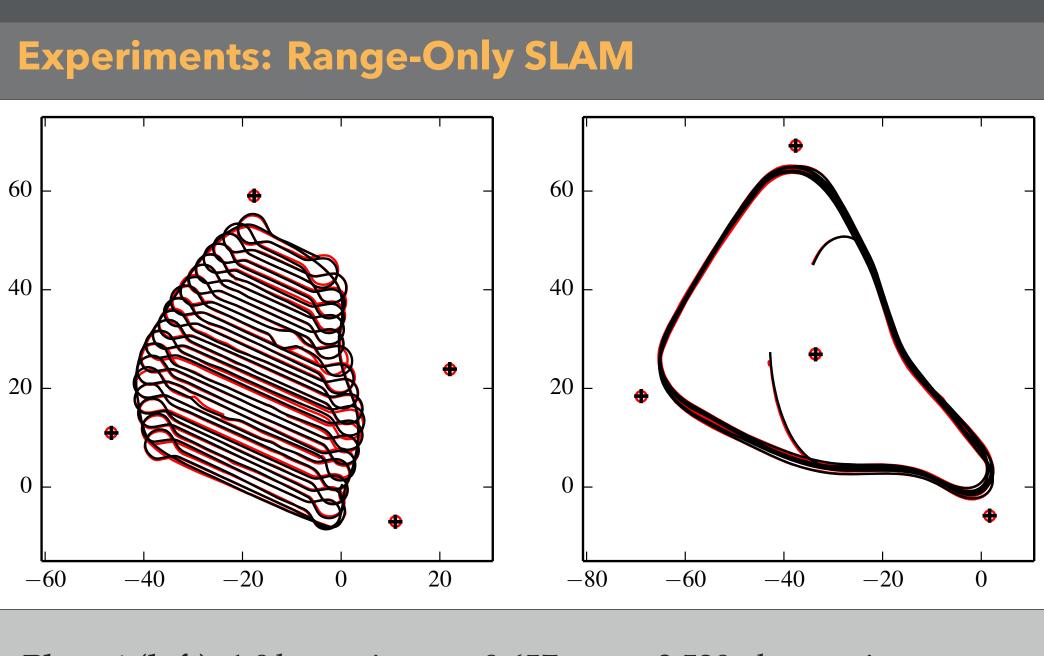
r approximate symmetries, improves convergence but not mputation

multaneous Localization and Mapping (SLAM)

robot

- moves (with noisy control mechanisms)
- observes landmarks (with noisy sensors)
- d wants to know (for t = 0, ..., T and i = 1, ..., N)
- where it is: its trajectory $X \coloneqq (X_0, \ldots, X_T)$
- where the landmarks are: the map $Y := (Y_1, \ldots, Y_N)$ suming it has
- observations $Z := (Z_t^i)_{t,i}$ of landmark *i* at time *t*
- control models $p_{X_t|X_{t-1},Z_{< t}}$
- sensor models $p_{Z_t^i|X_t,Y_i}$

Bayesian posterior (under natural independence assumptions):


 $p_{X,Y|Z}(x, y, z) = c(z) \cdot p_Y(y) \cdot \prod_{t=0}^{1} p_{X_t|X_{t-1}, Z_{< t}}(\dots) \prod_{i=1}^{N} p_{Z_t^i|X_t, Y_i}(\dots)$

Symmetries of SLAM

- In two dimensions, the environment is invariant under the *special Euclidean group* SE(2) of rigid transformations of \mathbb{R}^2 , which acts by a rotation followed by a translation:
- ▶ Landmark locations $Y_i \in \mathbb{R}^2$
- ▶ Robot pose $X_t \in SE(2)$ transforms body coordinates to global • $p_{X_t|X_{t-1},Z_{\leq t}}$ depends on X_{t-1} and X_t only through their *relative*
- *movement*: $X_{t-1}^{-1}X_t = (gX_{t-1})^{-1}(gX_t)$
- $p_{Z_t^i|X_t,Y_i}$ depends on X_t and Y_i only through their *relative position*: $X_t^{-1}Y_i = (gX_t)^{-1}(gY_i)$

The MCMC-SLAM Algorithm

- ▶ Fix $b : \{1, ..., N\} \rightarrow \{0, ..., T\}$: landmark *i* is "anchored" to time b(i)• Groups G_t (t = 1, ..., T) act by transforming x_s (if $s \ge t$)
- Groups G^i (i = 1, ..., N) act by transforming y_i
- MH algorithm with m = T + N proposal groups
- Mixture coefficient inversely proportional to proposal likelihood: improve "bad" components first

Using group actions is a powerful extension to the standard Metropolis-Hastings algorithm. It can take advantage of the (possibly approximate) factor and symmetry structure of the target distribution, speeding up convergence to the steady state and improving computational efficiency.

Future work includes SLAM with data association and, generally, bringing more such "algebraic" techniques to MCMC.

UNIVERSITY OF ALBERTA DEPARTMENT OF COMPUTING SCIENCE

- $\rightarrow p_Y$ is uniform (improper) map prior: invariant under SE(2)
- Without loss of generality, $X_0 = e$: robot starts at origin. Then state space is $U \coloneqq SE(2)^T \times \mathbb{R}^{2N}$, state $u = (x_t, y_i)_{t,i}$.
- See article in proceedings for details...

Plaza 1 (left): 1.9 km trajectory, 9,657 steps, 3,529 observations. Plaza 2 (right): 1.3 km trajectory, 4,091 steps, 1,816 observations.

Table: Comparison of Trajectory RMS Errors (*with running times*).

lgorithm	Plaza 1	Plaza 2
pectral	0.79 m (0.73 s)	0.35 m (0.51 s)
pectral + Opt.	0.69 m (9265 s)	0.30 m (2357 s)
ICMC (10+1000)	$0.32 \pm 0.02 \mathrm{m} (13.8 \mathrm{s})$	$0.54 \pm 0.06 \mathrm{m} (2.8 \mathrm{s})$
ICMC (100+10000)	$0.33 \pm 0.04 \mathrm{m} (131 s)$	$0.36 \pm 0.03 \mathrm{m} (28 \mathrm{s})$

Conclusions and Future Work