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Overview

Goal: Design efficient sampling methods
▶ Studied in CS, operations research (“Monte Carlo”), statistics, etc.
▶ Markov Chain Monte Carlo: a distribution-independent method
▶ Gibbs sampling, rejection sampling, slice sampling, etc.
▶ The Metropolis-Hastings (MH) algorithm

Here: Metropolis-Hastings moves based on group actions
▶ can take advantage of (approximate) symmetries
▶ a powerful, elegant, convenient, efficient family of algorithms

Markov Chain Monte Carlo (MCMC)

To sample from probability distribution p(x) dx using MCMC:
▶ Random walk X0,X1,X2, . . .

▶ X0 ∼ p0(x) dx (initial distribution)
▶ Xi+1 ∼ k(x′ | Xi) dx′ (transition kernel)

Choose transition kernel to make Xi converge in distribution to P

Metropolis-Hastings (MH)

MCMC transition kernel that adds a rejection step to a given proposal
kernel q:
1. Propose X′i+1 ∼ q(x′ | Xi) dx′

2. Accept Xi+1 B X′i+1 with probability α(Xi ,X′i+1)

3. Reject otherwise: Xi+1 B Xi

This is the “textbook” algorithm, and with acceptance probability

α(x , x′) B min
{
1,

p(x′) q(x | x′)
p(x) q(x′ | x)

}
produces a reversible Markov transition kernel k:

p(x) k(x′ | x) dx dx′ = p(x′) k(x | x′) dx dx′

AMore General MH Kernel

Unlike the textbook case, target distribution P(dx) and proposal
kernel Q(dx′ | x) may not have densities w.r.t. a common reference
measure
Theorem (Tierney, 1998, Theorem 2)
For any Q(dx′ | x) and P(dx), with an appropriate α, the MH algorithm
gives a Markov kernel K satisfying

P(dx)K(dx′ | x) = P(dx′)K(dx | x′)

An appropriate acceptance probability:
▶ Define µ(dx , dx′) = P(dx)Q(dx′ | x) and µT(dx , dx′) = µ(dx′, dx)
▶ Find R ⊂ X × X on which µ and µT are mutually absolutely

continuous, and outside which they are mutually singular
▶ Find the Radon-Nikodym derivative

r(x , x′) =
dµR

dµT
R

(x , x′)

such that 0 < r(x , x′) < ∞ and r(x , x′) = 1/r(x′, x) for all x , y ∈ X
▶ Use the acceptance probability

α(x , x′) =


min{1, r(x′, x)}, if (x , x′) ∈ R

0 otherwise

… a powerful result, but not straightforward to use

Motivating Example

Sampling from a probability density p(x , y) (center) on R2 \ {(0, 0)}
having factors p1 (left) and p2 (right)
MH with normally distributed proposal?
▶ q(x′, y′ | x , y) = N((x , y), (σx , σy))

▶ Hard to choose σx , σy: if too small, chain doesn’t move between
modes; otherwise, high rejection rate

Gibbs sampling?
▶ At each step, modify either x or y with equal probability: either

x′ ∼ p( · , y) or y′ ∼ p(x , · )
▶ Doesn’t move between ±X modes and ±Y modes
▶ Transition kernel concentrated on X, Y axes: no density
▶ Only works when moving along linear subspaces

Change of variables?
▶ Use polar coordinates (r, θ)
▶ p1 depends only on r, and p2 only on θ
▶ Gibbs sampling gives fast and no-reject MCMC kernel

What if re-parametrization is non-obvious? Can we directly use
symmetries? (p1 symmetric under rotation, p2 under scaling)

Groups and Actions

A group G is a set of elements, with
▶ A binary operation, written a · b or ab with a , b , ab ∈ G
▶ A unit element e, with e g = ge = g for all g ∈ G
▶ An inverse g−1 for every g, with g−1g = g g−1 = e

It acts on (state) space X with action T : G × X → X if:
▶ T(e , x) = x for x ∈ X
▶ T(gh , x) = T(g(T(h , x))) for g , h ∈ G, x ∈ X

Then G elements are invertible transformations of X
▶ unit is identity transformation: ex B T(e , x) = x
▶ group operation is composition: ghx B (gh)x = g(hx)

Invariant Measures

Theorem (Haar)
Every locally compact topological group has a unique (up to positive scale
factor) left-invariant measure µ:

µ(gA) B µ({ga | a ∈ A}) = µ(A), g ∈ G,A ⊂ G

Examples:
▶ Lebesgue measure on Rn is invariant under vector addition
▶ µ(dx) = x−1 dx is invariant on R×+
▶ Rotations of R2 can be represented as an angle in [0, 2π); the

Lebesgue measure is invariant
µ is a χ-relatively invariant measure if µ(gA) = χ(g)µ(A) for
χ : G → R+: then χ(e) = 1 and χ(gh) = χ(g)χ(h)
▶ Example: Haar measure µ under right multiplication:
µ(Ag) = ∆G

r (g) µ(A) with right modulus ∆G
r : G → R+

Problem Statement

Sample from probability distribution P on X having density p w.r.t.
measure λ: P(dx) = p(x) λ(dx). For i = 1, . . . ,m,
▶ group Gi acts on X
▶ Haar measure µi on Gi

▶ proposal kernel on Gi: qi(g | x) µi(dg) (g ∈ Gi, x ∈ X)
▶ λ is χi : Gi → R+-relatively invariant under Gi

MHWith Group Actions

Given, for i = 1, . . . ,m, mixture coefficients a(i , x) with∑i a(i |
x) = 1 (for all x ∈ X):
1. Sample i ∼ a( · | x) and g ∼ qi(g | x) µi(dg)

2. Calculate

α(i , x , g) B
χi(g) a(i | gx) p(gx) q̄i(g−1 | gx)

∆Gi
r (g) a(i | x) p(x) q̄i(g | x)

3. Accept x′ B gx with probability min{1, α(i , x , g)}
4. Reject otherwise: x′ = x

where
▶ q̄i(g | x) B

∫
Gi ,x

qi(gh | x) βi ,x(dh)
▶ Gi ,x B {g ∈ Gi | gx = x} is the stabilizer subgroup of Gi at x ∈ X
▶ βi ,x is a Haar measure on Gi ,x with βi ,x(Gi ,x) = 1

Exploiting Symmetries

Suppose p(x) ∝∏k
i=1 pi(x) for x ∈ X

▶ Groups Hi (i = 1, . . . , k) act on X
▶ pi(hx) = pi(x) for h ∈ Hi

Then each group Hi is a symmetry of factor pi; α(i , x , g) simplifies:
▶ If Gi ⊂ H j for some j, then p j(gx) = p j(x) for g ∈ Gi and the p j

factor cancels
▶ If qi(g | x) ∝ χi(g) pi(gx) then the χi, ∆Gi

r , and pi factors cancel
Ideally, only non-symmetric terms contribute to α
▶ Lower rejection rate
▶ Faster to compute

For approximate symmetries, improves convergence but not
computation

Simultaneous Localization and Mapping (SLAM)

A robot
▶ moves (with noisy control mechanisms)
▶ observes landmarks (with noisy sensors)

and wants to know (for t = 0, . . . , T and i = 1, . . . ,N)
▶ where it is: its trajectory X B (X0, . . . ,XT)

▶ where the landmarks are: the map Y B (Y1, . . . ,YN)

assuming it has
▶ observations Z B (Z i

t)t ,i of landmark i at time t
▶ control models pXt |Xt−1,Z<t

▶ sensor models pZi
t |Xt ,Yi

Bayesian posterior (under natural independence assumptions):

pX,Y |Z(x , y , z) = c(z) · pY(y) ·
T∏

t=0

pXt |Xt−1,Z<t(. . . )
N∏

i=1

pZi
t |Xt ,Yi

(. . . )

Symmetries of SLAM

In two dimensions, the environment is invariant under the special
Euclidean group SE(2) of rigid transformations of R2, which acts by a
rotation followed by a translation:
▶ Landmark locations Yi ∈ R2
▶ Robot pose Xt ∈ SE(2) transforms body coordinates to global
▶ pXt |Xt−1,Z<t depends on Xt−1 and Xt only through their relative

movement: X−1t−1Xt = (gXt−1)
−1(gXt)

▶ pZi
t |Xt ,Yi

depends on Xt and Yi only through their relative position:
Xt
−1Yi = (gXt)

−1(gYi)

▶ pY is uniform (improper) map prior: invariant under SE(2)

The MCMC-SLAM Algorithm

Without loss of generality, X0 = e: robot starts at origin. Then state
space is U B SE(2)T × R2N , state u = (xt , yi)t ,i.
▶ Fix b : {1, . . . ,N } → {0, . . . , T}: landmark i is “anchored” to time b(i)
▶ Groups Gt (t = 1, . . . , T) act by transforming xs (if s ≥ t)
▶ Groups Gi (i = 1, . . . ,N) act by transforming yi

▶ MH algorithm with m = T + N proposal groups
▶ Mixture coefficient inversely proportional to proposal likelihood:

improve “bad” components first
See article in proceedings for details…

Experiments: Range-Only SLAM
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Plaza 1 (left): 1.9 km trajectory, 9,657 steps, 3,529 observations.
Plaza 2 (right): 1.3 km trajectory, 4,091 steps, 1,816 observations.

Table: Comparison of Trajectory RMS Errors (with running times).

Algorithm Plaza 1 Plaza 2
Spectral 0.79m (0.73 s) 0.35m (0.51 s)
Spectral + Opt. 0.69m (9265 s) 0.30m (2357 s)
MCMC (10+1000) 0.32 ± 0.02m (13.8 s) 0.54 ± 0.06m (2.8 s)
MCMC (100+10000) 0.33 ± 0.04m (131 s) 0.36 ± 0.03m (28 s)

Conclusions and Future Work

Using group actions is a powerful extension to the standard
Metropolis-Hastings algorithm. It can take advantage of the
(possibly approximate) factor and symmetry structure of the target
distribution, speeding up convergence to the steady state and
improving computational efficiency.
Future work includes SLAM with data association and, generally,
bringing more such “algebraic” techniques to MCMC.


