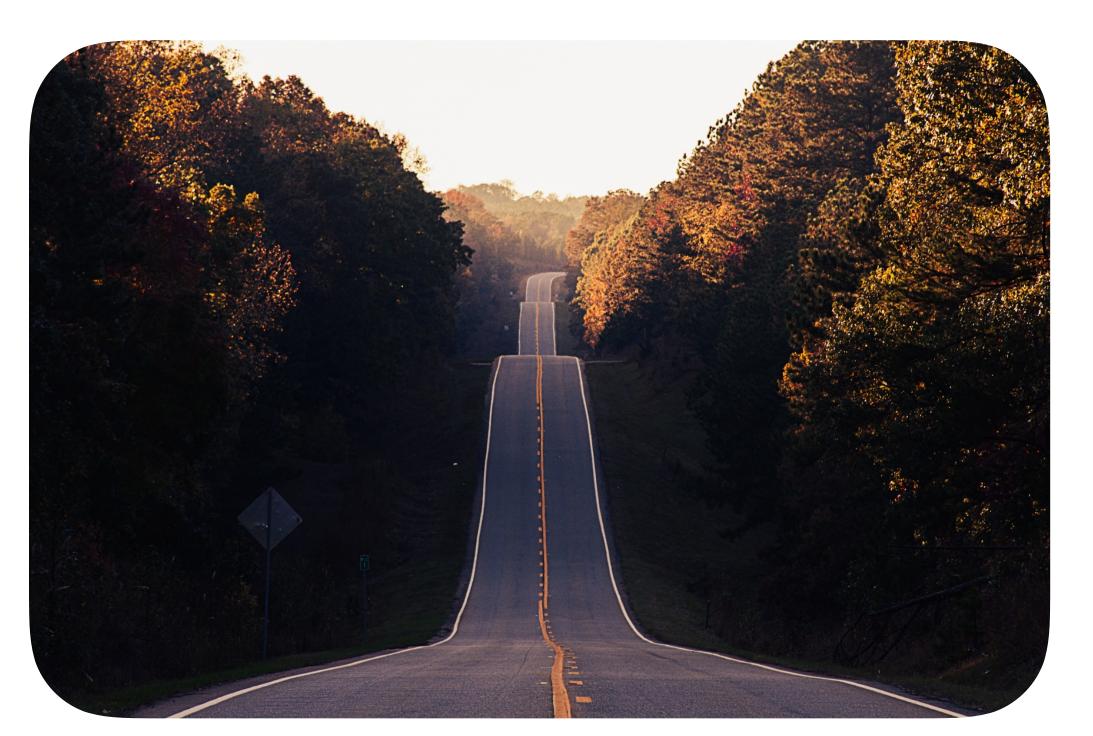
Discounted Reinforcement Learning Is Not an Optimization Problem

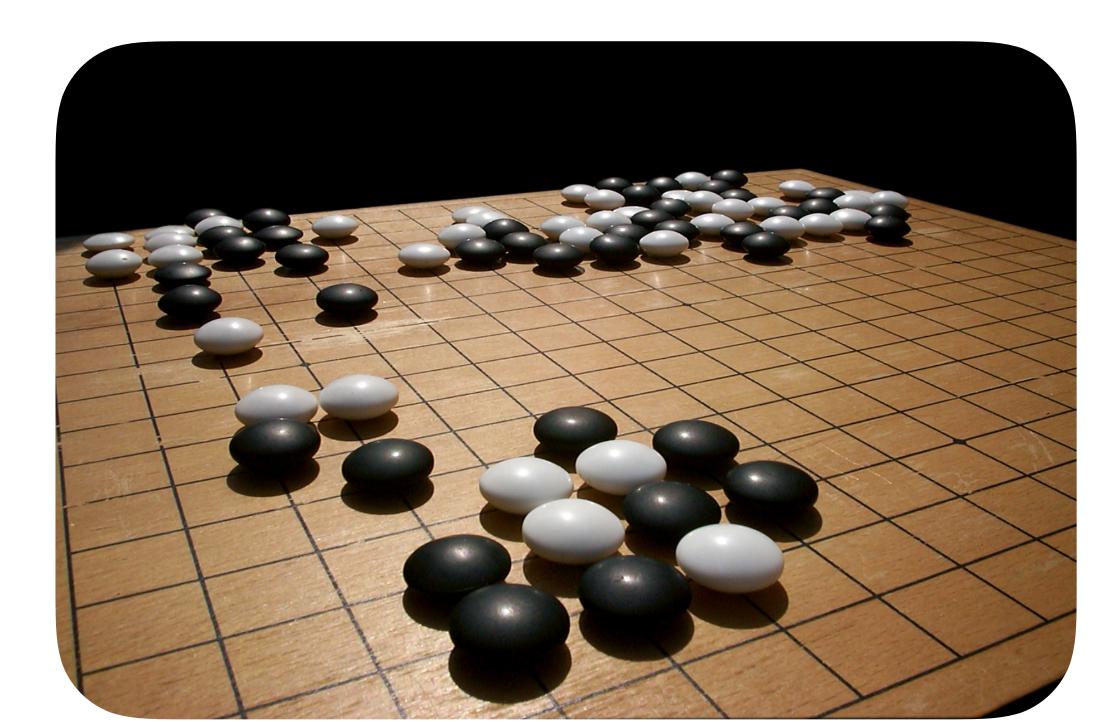
Abhishek Naik Roshan Shariff Niko Yasui Hengshuai Yao **Richard S. Sutton** hengshuai.yao@huawei.com {anaik1, rshariff, yasui, rsutton}@ualberta.ca

EDMONTON · ALBERTA · CANADA

Continuing Control



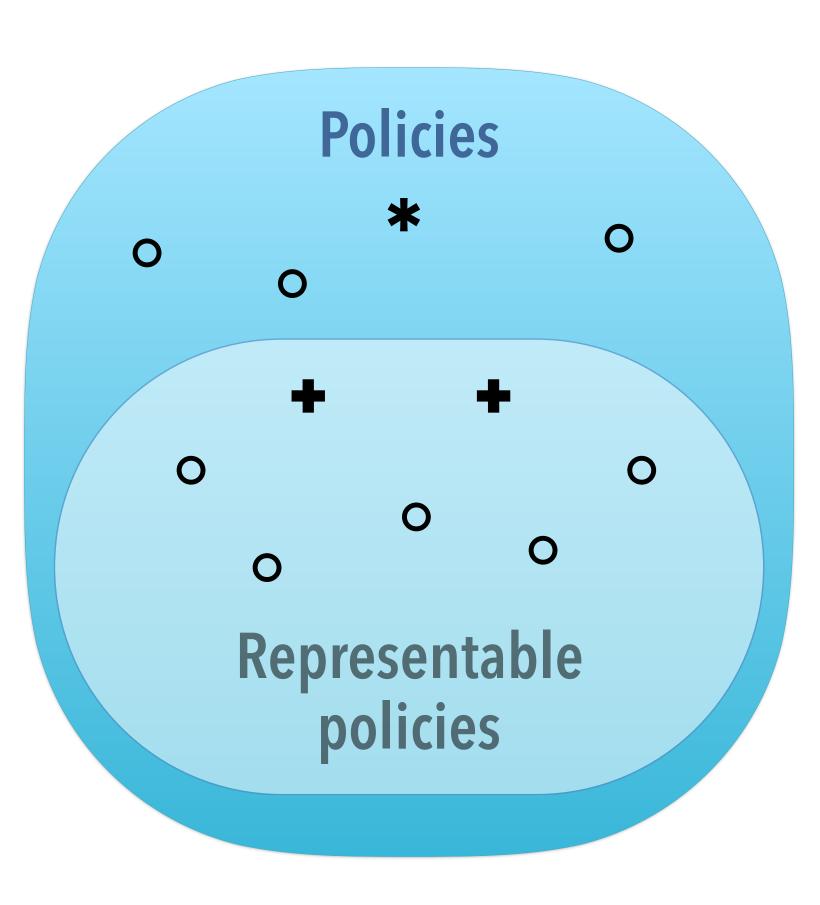
Function Approximation



10¹⁷² states! Need to approximate

Continuing control + function approximation → no discounting in the objective

Not an Optimization Problem



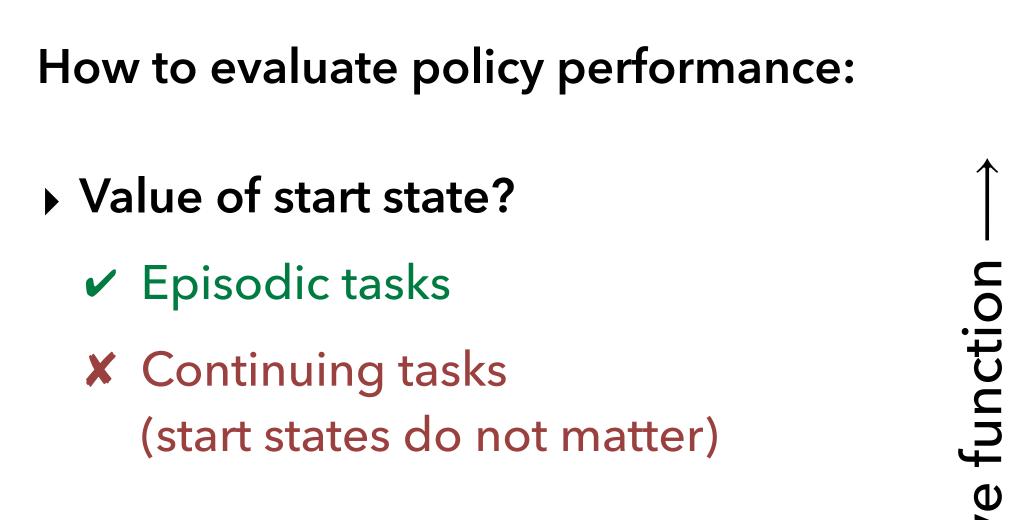
Comparing policies:

 $v_{\pi}^{\gamma}(s) \geq v_{\pi'}^{\gamma}(s)$ $\forall s$

No representable policy is better for every state!

Policy 0

Need an Objective Function

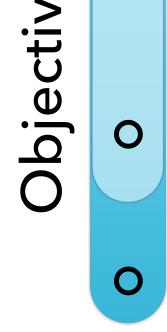


– Optimal policy Ο – Optimal representable policy Ο

- **Optimal policy** (for every state)
- Many "optimal" representable policies (each better in some states, worse in others)

Weighted average over states?

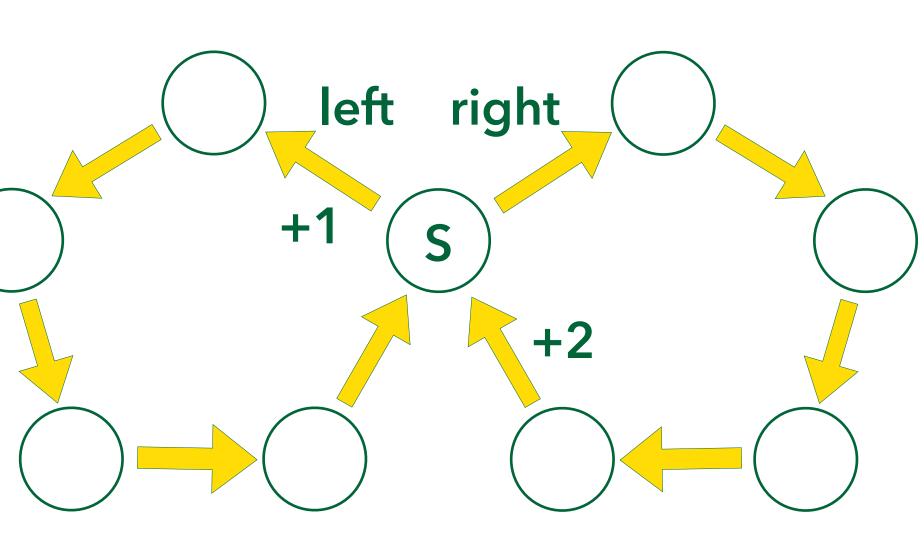
- Average reward
- ✓ Interest function
 - (but changes problem formulation)



Naively using discounted algorithms should not be the first choice for continuing tasks

X Maximizing Discounted Return **X**

Greedily maximizing discounted value does not maximize

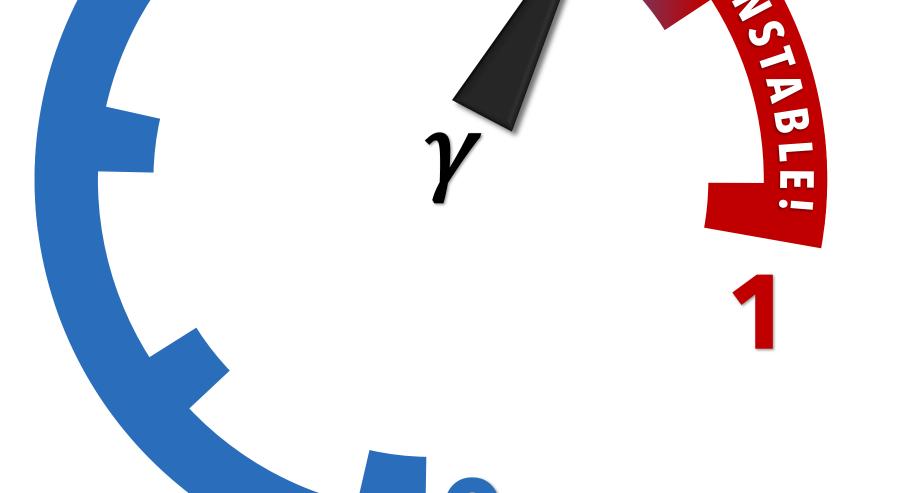


Critical γ is unknown and problem-specific

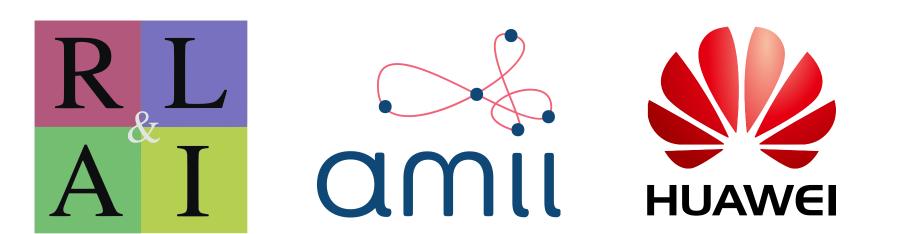
(Sarsa, Q-Learning)

Optimal policy depends on γ

Small γ : Critical γ^* Large γ : go right go left ≈ 0.84



Algorithms become unstable as $\gamma \rightarrow 1$



See paper for details: arxiv.org/abs/1910.02140