
Lunar Lander: A Continuous-Action Case Study for Policy-Gradient Actor-Critic Algorithms F57
Roshan Shariff, Travis Dick {roshan.shariff,tdick}@ualberta.ca

Introduction

Reinforcement learning has successfully been applied to a wide
variety of control problems, usually with a finite number of
actions. Policy-gradient algorithms use the ideas of
reinforcement learning in domains that may have an infinite or
continuous set of actions. We investigate the use of such an
algorithm with a simple domain with continuous states and
actions, based on a two-dimensional simulation of the Apollo
lunar lander.

The Lunar Lander Domain

We introduce a new domain in which the agent must learn to
control the Apollo lunar lander and guide it to a safe landing on
a target on the lunar surface. The state of the lander is specified
by six variables—its position and orientation (x, y, and θ) and
its translational and rotational velocities (vx, vy, and ω). The
agent has two controls—the main engine (which points down)
and the attitude control system (which changes the lander’s
rate of rotation). These two controls constitute the
two-dimensional continuous action space.
The simulator uses lunar gravity (g = 1.622 m/s2). It updates
the state variables at a rate of 20 Hz (∆t = 1/20 s) according to
the following equations:

ṽx,t := vx,t−1 + ∆t · (−athrust sin θ)

ṽy,t := vy,t−1 + ∆t · (athrust cos θ − g)

ω̃t := ωt−1 + ∆t · (aacs)

(vx,t, vy,t, ωt) := do_collision(xt, yt, θt, ṽx,t, ṽy,t, ω̃t)

xt := xt−1 + ∆t · vx,t

yt := yt−1 + ∆t · vy,t

θt := θt−1 + ∆t · ωt

The agent updates its actions (athrust and aacs) at a rate of 2 Hz.
The do_collision function modifies the velocity of the lander
when it collides with the lunar surface, using the algorithm of
Guendelman et al. (2003). It determines when the lander has
settled and calculates the severity of the collision.

The Learning Task and Reward

The goal of the agent is to land the lunar module softly at a
designated target. At each time step of the episodic task, the
agent receives a small penalty proportional to its use of the
main engine, and another penalty for the accumulated impact
forces on the lander. An episode ends when the agent lands
safely (+1 reward), exceeds a time limit (-1 penalty), suffers a
catastrophic impact, or flies too far from the target. In all these
situations, it also receives a penalty proportional to the lander’s
final distance from the target.

Actor-Critic

Actor-critic algorithms have two components: the actor and the
critic. The actor chooses actions and the critic evaluates those
actions. The actor uses the critic’s feedback to improve its
behaviour. By using a parametric policy, the actor can
efficiently choose from a large (possibly infinite or even
continuous) set of actions.

ENVIRONMENT

ACTOR

CRITIC

state

action

reward

criticism

The Actor-Critic Architecture

Policy-Gradient

A parametric policy πθ (with parameters θ) selects action a in
state s with probability πθ(s, a). The performance of the policy
can be measured by its average per-episode return:

ρ(θ) = E

[
T
∑
t=1

Rt

]
,

where the sequence of rewards Rt is generated by following πθ.
The policy gradient theorem (Sutton et al., 2000) gives an
unbiased estimate of the gradient of performance with respect
to the policy parameters:

∇θ ρ(θ) = E

[
∇θ πθ(S, A)

πθ(S, A)
Qθ(S, A)

]
.

Qθ is the policy’s action-value function and the states S and
actions A are sampled from the policy’s stationary distribution.
Since the agent’s experience is approximately sampled from the
stationary distribution, it can be used to estimate the gradient
of ρ(θ) without an explicit model of the environment. The
estimator of Qθ can be viewed as the critic in the actor-critic
architecture. The actor maximizes ρ(θ) by using these gradient
estimates to perform a stochastic gradient ascent in the space of
policy parameters.
We use the AC-S policy-gradient algorithm of Degris et al.
(2012), which estimates the state value function with TD(λ) and
gives the TD error as feedback to the actor. It also uses
eligibility traces so that credit for a reward is given to the
history of actions that led to it.

Empirical Results

We propose a version of the AC-S algorithm with eligibility
traces, feature weighting, and truncated action proposal
distributions (each is explained in one of the following
sections). In the following experiments, we compare this
primary algorithm with versions missing one of these features.
For each variation, we performed a coarse parameter study to
find the best actor and critic step sizes, αu and αv. The
optimized parameters for the primary algorithm were
αu = αv = 0.147, and λ = 0.8.

Truncated Action Proposal Distribution

In domains like the lunar lander, the range of allowable actions
is bounded. The AC-S algorithm of Degris et al. (2012) samples
actions from a normal distribution whose parameters µ and σ

are linear functions of the state feature vector (passed through a
transfer function). The normal distribution, however, can
always propose actions outside the allowed range. Instead, we
use a truncated normal distribution to propose actions, which
makes the algorithm aware of the action range and never
propose invalid actions.
Empirically, we found that on this domain this modification did
not significantly affect the learning curves for the optimal step
sizes. However, a parameter study over αu and αv showed that
the truncated normal distribution makes the algorithm less
sensitive to the choice of step sizes.

1.5 1.0 0.5

1.500

1.333

1.167

1.000

0.833

0.667

0.500

0.333

0.167

0.000

0.167log10(αu )
Truncated Normal

1.5 1.0 0.5

log10(αv )

Gaussian

8

7

6

5

4

3

2

1

Eligibility Traces

The TD(0) algorithm credits each action with the reward that
immediately follows it. In many situations, however, TD(λ)
(with λ > 0) performs better because it uses an eligibility trace to
assign credit for each reward to a (limited) history of earlier
actions. The importance of each action decays geometrically by
a factor λ per time step. An important contribution of the AC-S
algorithm (Degris et al., 2012) is to introduce eligibility traces to
policy gradient algorithms.
Unlike feature vectors produced by tile coders, the eligibility
trace is not sparse. To maintain sparsity (allowing efficient
implementation) we store the eligibility trace as a queue of
sparse feature vectors. As each vector in the queue is implicitly
multiplied by λ at each time step, its importance drops below
any small constant ε after logλ ε steps. By truncating the queue
to this length, our algorithm approximates the eligibility trace
with a modest amount of computation. For example, with
λ = 0.8 and ε = 0.05, the queue contains a maximum of
⌈13.25⌉ = 14 of the newest feature vectors.
We measured the effect of eligibility traces by comparing the
performance of the AC-S algorithm with λ = 0.8 to the version
with no traces (λ = 0).

0 5000 10000 15000 20000 25000 30000

Episodes

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0Average return λ=0.8

λ=0.0

The experiments demonstrate the improved learning possible
with eligibility traces, even with our approximate
implementation. Without eligibility traces the algorithm is
forced to use larger step sizes (αu = 0.215, αv = 0.5) for the
actor and critic to remain competitive, which may increasing its
susceptibility to noise.

Feature Weighting

Tile coding is often used to represent continuous states as
feature vectors, where each feature representing a cell in a tiling
of the state space. The tilings are often offset to increase
resolution without sacrificing generalization. Tiling subsets of
the state variables in addition to the entire space also helps
generalization. Because the number of offsets required to
adequately cover the space increases exponentially with the
number of variables in the tiling, subsets of many state
variables contribute more tilings to the feature vector than
smaller subsets. Since the lower dimensional tilings are under
represented in the feature vector, their benefits are negated.
We propose a feature weighting scheme where the features
representing each subset of state variables are weighted
inversely to the number of tilings of those variables. In this
scheme each subset of variables contributes equally to the
learning of the agent. We evaluate whether this scheme
improves learning performance.

0 5000 10000 15000 20000 25000 30000

Episodes

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0Average return weighted

unweighted

Conclusions

We introduced the lunar lander task and discussed the
implementation of an actor-critic policy-gradient agent for it.
Various modifications were necessary for the algorithm to learn
how to land the lunar module. We therefore consider this task a
useful test-bed for investigating continuous action
reinforcement learning algorithms.
Finally, we presented empirical evidence evaluating the impact
of the algorithm modifications. The large improvement in per-
formance we achieved with the same underlying algorithm
suggests that eligibility traces and the details of tile coding have
a significant impact on real-world performance.

Project Website

To obtain source code for the simulator and agent, go to
https://github.com/roshanshariff/lunarlander

References
Thomas Degris, Patrick M. Pilarski, and Richard S. Sutton, “Model-Free

Reinforcement Learning with Continuous Action in Practice,” in
American Control Conference (ACC), Montreal, QC, Canada, 2012,
pp. 2177–2182.

Eran Guendelman, Robert Bridson, and Ronald Fedkiw, “Nonconvex Rigid
Bodies with Stacking,” ACM Transactions on Graphics (TOG), vol.
22, no. 3, pp. 871–878, July, 2003.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour,
“Policy Gradient Methods for Reinforcement Learning with
Function Approximation,” in Advances in Neural Information
Processing Systems (NIPS), Denver, CO, USA, 2000, pp. 1057–1063.


