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Abstract

Humans and animals continuously make short-term cumulative predictions about their sensory-input stream, an ability
referred to by psychologists as nexting. This ability has been recreated in a mobile robot using modern reinforcement
learning approaches, but in practice there are limitations on how many predictions we can learn. In this paper, we
investigate inferring new predictions from a minimal set of learned General Value Functions. We show that linearly
weighting such a collection of value function predictions enables us to also make accurate multi-step predictions about
future outcomes, and provide a closed-form solution to estimate this linear weighting. We also show that a similar
approach can produce accurate estimates of value functions which we did not explicitly train to predict.
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1 Introduction

The ability to continually make predictions about one’s sensory-motor stream is an important aspect of forming awareness
of one’s environment. In particular, it has been shown that both humans and animals continually make large numbers of
short-term cumulative predictions about their sensory input at many different time-scales [Fedus et al., 2019, Pezzulo,
2008, Carlsson et al., 2000, Brogden, 1939]. This ability is referred to as nexting. Recent work in Reinforcement Learning
has been able to recreate this ability in a mobile robot by using a collection of General Value Functions (GVFs)[Sutton et al.,
2011], learned online and in parallel [Modayil et al., 2014].

There are are limitations, however, on the number of predictions that an agent can make in a continual learning setting.
Each nexting prediction that the agent makes has its own cost in terms of memory and computation. With a large enough
collection of nexting predictions — say in the millions — it becomes infeasible for the agent to be able to update them
all. Furthermore, in this setting we want our agents to be able to make new predictions during run-time. This can be
problematic since each GVF may require different hyperparameters (learning rate α, trace decay rate λ, etc.) to learn
accurate predictions. Because of this, not only does the agent have to learn each new prediction from scratch, but may have
to do so multiple times in order to find the right hyperparameters — all before being able to actually use that prediction.

Instead of learning all possible predictions from scratch, in this paper we investigate whether an agent can use a small set
of sufficiently informative nexting predictions to infer the answers to other questions. We show that a small collection of
GVF predictions can be used to accurately estimate the answers to predictive questions that the agent has not explicitly
learned. We introduce a simple linear transformation which uses a collection of GVF predictions to estimate 1) other GVFs
with arbitrary discounting parameters, and 2) n-horizon predictions.

This work has a similar motivation to multi-scale Successor Representations (SRs) [Momennejad and Howard, 2018], and
Universal Value Function Approximators (UVFAs)[Schaul et al., 2015]. SRs, in fact, can be represented as GVFs. This work
differs from multi-scale SRs, because they assume a tabular setting and use a different weighting scheme with approximate
laplace transforms. UVFAs focus on learning value functions that generalize across goal states, using neural networks.

2 General Value Functions

In this section, we define the concepts of return and value and their extension to more general predictions. Consider a
Markov Reward Process defined by state-space S, transition function P : S × S 7→ [0, 1], and reward function r : S 7→ R
defined as r(s) = E

[
Rt+1|St = s], where Rt and St are random variables representing the reward and state at time t

respectively. We define the return at time t to be

Gt :=

∞∑
j=0

γjr(St+j)

where γ ∈ [0, 1) is a constant discounting factor. Given a state s ∈ S , we define the value of state s to be the expected return
from state s

v(s) := E
[
Gt|St = s]

The function v(s) is referred to as the Value Function. A General Value Function (GVF) [Sutton et al., 2011] extends the above
definition of value, by allowing r(St) to be any function of the current state — not just a reward signal — and letting
the discounting factor be a function of state as well, γt := γ(St). In this paper we consider only constant discounting
factors, thus the above definition of return does not change. GVF predictions with r(·) set to the observations correspond
to nexting predictions [Modayil et al., 2014].

3 Predicting Future Outcomes with General Value Functions

In this section, we explain how a set of value functions predictions on this time step can be used to approximate outcomes
n-steps into the future. We start by assuming that you have access to the actual returns into the future, and then discuss
implications when estimating the returns using value functions.

Suppose we are interested in reconstructing an unknown time series y1, . . . , yt, . . . ∈ R. Suppose further that we know the
discounted sum of this time series, for several discounts γ1, . . . , γk ∈ [0, 1):

Gt,γi =

∞∑
j=0

γji yt+j+1.
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Our goal is to reconstruct various aspects of y given only Gt,γ1 , . . . , Gt,γk . We are primarily interested in reconstructing yn
for a variety of horizons n ∈ N. We might also be interested in reconstructing Gγ for some γ /∈ Γ = {γ1, . . . , γk}.
In general, obtaining exact reconstructions is not possible, because we only have k known quantities and yet we want to
reconstruct yn for all n ∈ N. Our only recourse is to approximate y. To do so, define the function f : N→ R, with f(t) := yt.
We will try to find a f̂ that minimizes the distance to f .

To begin with, we can think of f as an element of an infinite-dimensional vector space — the space of all functions N→ R.
We can define an inner product on this space: 〈f, g〉 =

∑∞
t=0 f(t)g(t), for f, g ∈ N → R, which in turn gives us a norm

‖f‖ =
√
〈f, f〉 =

√∑∞
t=0 f(t)

2. An element of this function space is the function t 7→ γt. We can see that the discounted
sum is actually an inner product: Gγ = 〈γt, f〉. In other words, we have a system of k linear equations in the unknown f :

〈γt1, f〉 = Gt,γ1
...

〈γtk, f〉 = Gt,γk

As mentioned above, it is impossible to recover the infinite-dimensional f by solving this system; we can however recover
the component of f that lies in the k-dimensional subspace spanned by γt1, . . . , γtk. Define

f̂θ(t) :=

k∑
i=1

θiγ
t
i

for θ ∈ Rk as a linear combination of the functions {γt1, . . . , γtk}with coefficients θ1, . . . , θk. We want to find the coefficients
θ that minimize the squared distance ‖f̂θ − f‖2. The solution to this problem is

θ = K−1

〈γ
t
1, f〉
...

〈γtk, f〉

 ,
where K is a k×k matrix whose entries are given by Kij = 〈γti , γtj〉. Fortunately, the entries of K can actually be computed
in closed form when the discounting factors are constant:

Kij = 〈γti , γtj〉 =

∞∑
t=0

γtiγ
t
j =

1

1− γiγj

for 0 ≤ γi, γj < 1. We can also use `2 regularization when estimating θ:

θλ = (K + λI)−1

〈γ
t
1, f〉
...

〈γtk, f〉


where λ is the weight of the regularization and I is an identity matrix.

With this approximation to f , we can return to the problem of approximating aspects of the series y. We can obtain
n-horizon predictions by using

yn = f(n) ≈ f̂θ(n) =

k∑
i=1

θiγ
n
i .

We can estimate the discounted sum 〈γt, f〉 for some γ /∈ Γ using

∞∑
i=0

γtyt+1 = 〈γt, f〉 u 〈γt, f̂θ〉 =

k∑
i=1

θi〈γt, γti 〉 =

k∑
i=1

θi
1− γiγ

.

When making predictions about the future, we do not have access to exact returns. Rather, we will estimate value
functions—estimate expected returns—to use within the above formulas. For exact value functions, we can obtain the
same approximations as above for expected n-step values and expected discounted sums. This is appropriate, as any
direct multi-step prediction method using squared error is estimating the expected value n steps in the future. The
approximation of the value functions themselves will introduce additional approximations to above.
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4 Approximation Error

In practice we do not have access to the true returns Gt,γi , but instead have to estimate them. We want to characterize the
error that results from the transition from true returns Gt,γi to expected returns E[Gt,γi ].

4.1 Idea 1: Characterization in terms of variance

One simple way we can characterize the approximation error is by considering the expected difference between the solution
θ obtained when using true returns and when using expected returns. Let GΓ be the vector of such that GΓ[i] = Gt,γi , and
VΓ be the vector of corresponding expected returns. Consider the solutions θ := K−1GΓ and θ̂ := K−1VΓ. In expectation,
we have

E[||θ − θ̂||2] = E[||K−1GΓ −K−1VΓ||2]

= E[||K−1(GΓ − VΓ)||2]

= E[(GΓ − VΓ)>(K−1)>K−1(GΓ − VΓ)]

Consider a special case where K−1 happens to be orthonormal, then

E[||θ − θ̂||2] = E[(GΓ − VΓ)>(GΓ − VΓ)]

= E[

k∑
i=1

(Gt,γi − E[Gt,γi ])
2]

=

k∑
i=1

E[(Gt,γi − E[Gt,γi ])
2]

=

k∑
i=1

V ar[Gt,γi ]

Thus in this special case, the approximation error is a sum of variances of each of the Gt,γi . This implies two things:
first, that having more GVFs does not necessarily improve the approximation, in fact we ought to have a “less-is-more”
approach; and second, that the approximation will be better when using lower values of γ since these will be lower
variance.

In general, K−1 is not orthonormal. In this case, we end up with

E[||θ − θ̂||2] =

k∑
i,j=1

Λi,jCov(Gt,γi , Gt,γj )

Where Λ = (K−1)>K−1. Notice that, in general, this will be worse than the above approximation error. TODO: do we
ever get negative covariance between returns?? This might suggest that a useful heuristic for selecting Γ is ensuring
that K−1 = (ΓΓ>)−1 is orthonormal (or at least close to orthonormal). In an episodic setting, one way for K−1 to be
orthonormal is when K−1 is a DFT matrix. This would require using complex-valued γ values with |γi| = 1 for each γi.
Similarly, in a continuing task we can get an orthonormal K−1 by truncating the returns to some number of steps τ ∈ N
and using a τ -sample DFT matrix.

Note that the approximation error in the solution θ tells us the prediction errors that result from moving from true returns
to expected returns in a straight forward way.

E[||γ>θ − γ>θ̂||2] =

k∑
i,j=1

Λ′i,jCov(Gt,γi , Gt,γj )

where now Λ′ = (K−1)>γγ>K−1 and γ is the k-dimensional vector such that γi = γni for n-horizon prediction and
γi = 1

1−γγi for estimating a GVF prediction with discount parameter γ.
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4.2 Idea 2: Decomposition of approximation errors

Suppose our goal is to approximate V γ .

Let V γ,n be the value reconstructed from V γ1 , ..., V γn (n true values).

Let V γ,k be the value reconstructed from V γ1 , ..., V γk (k true values).

Let V̂ γ,k be the value reconstructed from V̂ γ1 , ..., V̂ γk (k estimated value).

The approximate error is bounded by

|V γ − V̂ γ,k|2 ≤ |V γ − V γ,n|2 + |V γ,n − V γ,k|2 + |V γ,k − V̂ γ,k|2.

The first term is likely to go to zero as n→∞ (TODO).

For the third term, assume the given estimated values are bounded with high probability (TODO: justify this assumption
(cite Sajed, Chung, and White, 2018). Intuitively, higher gamma return has higher magnitude, and thus looser bound), i.e.,

Pr(|V̂ γi − V γi | ≤ ε

1− γi
, ∀i ∈ [k]) ≥ δ.

Following from Andrew’s note, let GΓ = [V̂ γ1 , ..., V̂ γk ]T , VΓ = [V γ1 , ..., V γk ]T , w = [ 1
1−γγ1 , ...,

1
1−γγk ] and ε =

[ ε
1−γ1 , ...,

ε
1−γk ]T , then

V γ,k − V̂ γ,k = wθ − wθ̂
= w(θ − θ̂)
= w(K−1)(GΓ − VΓ)

≤ w(K−1)ε ∵ the assumption we made

=

k∑
j=1

k∑
i=1

εjwi(K
−1)ij

≤
k∑
j=1

k∑
i=1

ε(K−1)ij
(1− γi)(1− γj)

∵ εjwi =
ε

(1− γγi)(1− γj)
≤ ε

(1− γi)(1− γj)

≤ ε

(1− γmax)2

k∑
j=1

k∑
i=1

(K−1)ij

The bound suggests that if there are estimation errors in value functions, we should use the inverse Kernel matrix which
has smaller sum of values. It justifies why `2 regularization helps in our experiments (is it true?). This equation might be
able to write as a function of γ, γ1, ..., γk (if we have the close-form expression of K−1).

5 Experimental Results

In this section we give two simple demonstrations of an agent’s ability to infer the answers to questions it has not been
trained to predict. We imagine a scenario in which the agent is performing a simple prediction task for a number of
evaluation steps. Mid-way through the task, the agent adds a new prediction to be evaluated.

5.1 Predicting Future Observations

To demonstrate our method’s ability to make n-horizon predictions, we tested our approach on the Mackey-Glass time
series, a single-variable dataset derived from the time-delay differential equation:

∂y(t)

∂t
= α

y(t− τ)

1 + y(t− τ)10
− βy(t)

In this experiment, we used τ = 17, α = 0.2, and β = 0.1, starting from an initial value of y(0) = 1.2. The agent makes
predictions at a horizon of 6 steps for 1, 000, 000 steps, and adds a horizon 12 prediction mid-way through. We gave the
agent a GVF basis consisting of 100 GVFs and constant discount factors γi = 1.0 − i/101, for i = 1, . . . , 100. The GVFs
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Figure 1: Left: Online Mean Squared Error (MSE) for the GVF Basis and Direct AR. For the first 500,000 steps of training, the
agent makes only horizon 6 predictions. At step 500,000 the agent adds a horizon 12 prediction to evaluate. Performance
stabilizes at around 725,000 steps, so we omit the final 250,000 steps. Right: Online Root Mean Squared Error (RMSE) for
the GVF Basis and Direct TD. In this figure “Gamma1” is 0.9 and “Gamma2” is 0.8.

were trained using TD(0) with linear value function approximation. The features given to the GVFs was a history of the
previous 4 observations. We additionally included predictions made using a linear autoregressive model (“Direct AR”),
with a history of 4 observations, as an optimal baseline. Note that the baseline was allowed to directly train on each of the
horizons of interest, while our method was never explicitly trained to do any n-horizon prediction.

Results on this task are shown in figure 1 (Left). We can see that at the start of training, the GVF basis predictions at
horizon 6 take a bit longer to learn, but still ends up reaching the same performance level as the baseline without ever
being trained to make this prediction. At the 500,000 step mark, the agent begins making horizon 12 predictions. Note that
the baseline agent using direct AR has to wait almost 100,000 steps before it can obtain a reasonably accurate horizon 12
prediction! Furthermore, note that the GVF basis could have just as easily made predictions for an arbitrary number of
horizons, all of which can be made immediately.

Our method is slightly less accurate than the final performance of the baseline at horizon 12. However, we note that
the discounting values are chosen rather arbitrarily; a better understanding of discount selection strategy could lead to
improved performance. Selecting optimal discounting factors is still currently a work in progress at the time of writing.
We note also that in these experiments, the GVFs were given a history of observations in order to build up sufficient state
information. We could have instead used the GVF predictions themselves as features at each step, as in Schlegel et al.
[2018]. We find that this approach works much better in general, but is outside the scope of this paper.

5.2 Predicting other General Value Functions

We also tested the accuracy of our method for predicting other GVFs. The environment is a randomly generated Markov
chain with 500 states and the branching factor of 5 (the number of successor states), where we can compute the true value
functions exactly. GVF basis learns the GVFs of a set 10 discount factors linearly spaced between [0.0, 0.99], Γtrain, and
predicts the GVF of a different discount factor γ. Direct TD method learns the GVF of the discount factor γ directly.

Both methods use TD(0). We tuned the regularization constant over the values λ ∈ {0.0, 10−1, 10−2, 10−3, 10−4} and the
learning rate over the set {0.4, 0.2, 0.1, 0.05, 0.025}. Online performance is shown in Figure 1 (Right). For the first 300,000
steps of training, the agent makes prediction for γ1 = 0.9. We can see that the GVF Basis predictions are comparable to
Direct TD predictions in the beginning of training. At step 300,000 the agent adds a prediction for γ2 = 0.8. The GVF Basis
can immediately make the new prediction accurately; the Direct TD method, however, needs to learn the value function
from scratch, and takes roughly 430,000 steps to reach the same performance as the GVF Basis estimate.

6 Conclusions

In this work, we introduced a novel approach to infer new GVF predictions and multi-step predictions from a small set
of learned GVFs. This work was focused more on whether a collection of GVF predictions can be used to make other
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predictions, rather than on the general utility of this approach. In these initial experiments, the collection of discounting
factors Γ was chosen naively; future work will investigate how these discounting factors can be chosen optimally to
facilitate reconstructing multi-step and discounted cumulative predictions. It is possible that better performance can be
attained by selecting Γ in a more principled way. We note also that discounted cumulative predictions are interesting
in their own right for time series prediction problems such as section 5.1; each of the predictions made with a different
discounting factor provides slightly different information about how the signal is expected to evolve over time. We believe
that the fact that predictions of this sort also facilitate relatively accurate multi-step predictions could make them a subject
of interest to the general time series forecasting community.
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